Robotic Buoy

Mentor: Dr. Porfiri

Collaborator: Jeffery Laut

Discipline: Mechatronics

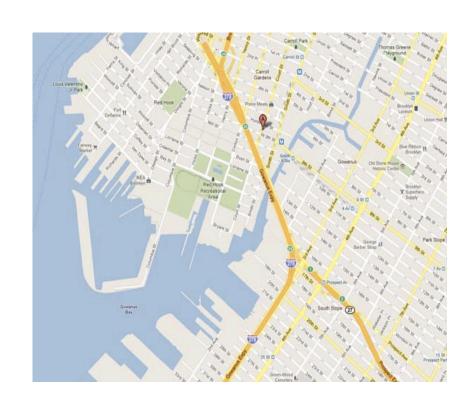
Acknowledgments

This work is supported in part by the National Science Foundation under a Research Experience for Teachers (RET) Site grant EEC-0807286. We thank the Mechatronics Lab and the Dynamical Systems Lab for hosting us during our summer research program.

The Gowanus Canal Time Line

1860's built

1906

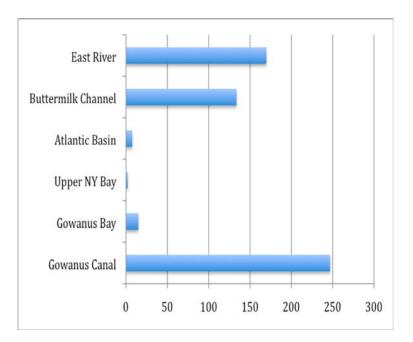

1911 flushing tunnel system

1960s

1987 Red Hook WPCP

1999

2010 Superfund



Combined Sewage Overflow

- ♦ Older cities use one pipe for all their sewage and runoff
- ♦ When it rains there is an overflow
- ♦ There are 14 CSO entry points into the Gowanus Canal

Gowanus Canal Water

- ♦ Dissolved Oxygen (DO)

Gowanus Canal Sediment

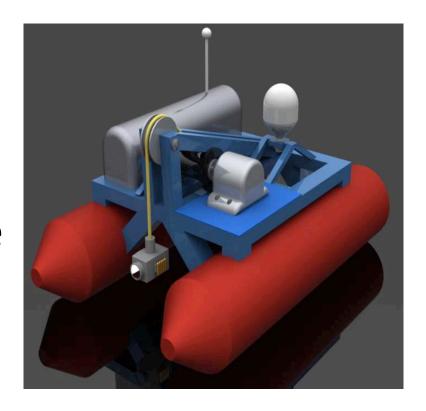
TABLE 1
New York State Guidelines for Effects of Metals on Marine Organisms and the Concentration of Metals in the Sediments of Four Waterways in the Port of New York/New Jersey

Concentration (parts per million - dryweight)								
Metal	Lowest Effect Level	Severe Effect Level	Gowanus Canal	Newark Bay	Arthur Kill	Newtown Creek		
Antimony	2.0	25.0	<21	NA	NA	NA		
Arsenic	6.0	33.0	10	9-17	17-25	5-33		
Beryllium	NA	NA	1	NA	NA	NA		
Cadmium	0.6	9.0	11	1-2	1.5-3	1-20		
Chromium	26.0	110.0	151	175	161	305		
Copper	16.0	110.0	630	105-131	178-304	61-770		
Lead	31.0	110.0	1343	109-136	111-261	68-554		
Mercury (total)	.15	1.3	3	2-3	2-4	1-3		
Nickel	16.0	50.0	88	33-40	20-60	12-140		
Selenium	NA	NA	2	NA	NA	NA		
Silver	1.0	2.2	21	2-4	2-5	2-3		
Thallium	NA	NA	<42	NA	NA	NA		
Zinc	120.0	270.0	1130	188-244	230-403	104-1260		

Sources: Audrey Massa — metal concentrations for Newark Bay, Arthur Kill, and Newtown Creek

Robert Smith — metal concentrations for the Gowanus Canal

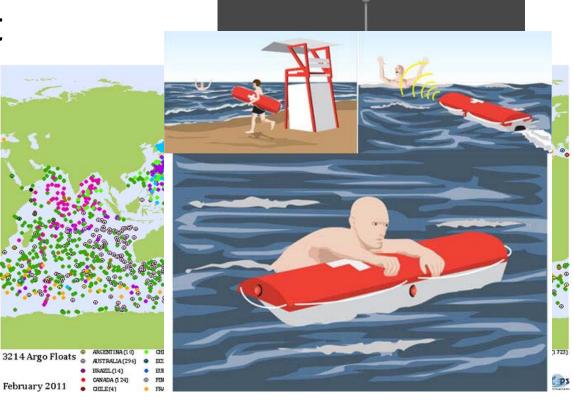
N.Y.S. Department of Environmental Conservation - effect levels



NA=Not available

The Gowanus Bot

- **♦**Robotic Buoy
- **♦**Collect
- ♦Send
- ♦ Public education

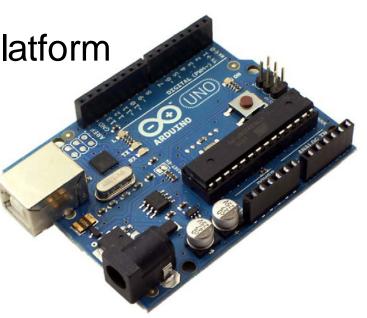


Similar Projects

- **♦ ARGO**
- ♦ Seaperch
- ♦ Globe.org

Robot Frame

- ♦ PVC piping for floatation
- ♦ ½ inch diameter
- ♦Plexiglas mount



Microcontroller

♦ Arduino UNO

♦ Inexpensive

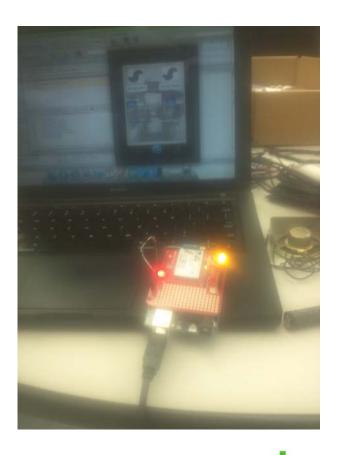
Programming: X-Code

```
-(void) moveLeft
{
    NSString * motorMove = [NSString stringWithFormat:@"HELLO#"];
    if (leftYN == YES)
    {
        motorMove = [NSString stringWithFormat:@"2#"];//send move left until send stop command
    }
    else
    {
            motorMove = [NSString stringWithFormat:@"2#"];//send move left while touched
    }
    NSString * address = @"192.168.1.172";
    UInt16 port = 9000;

    NSData * moveData = [motorMove dataUsingEncoding: NSUTF8StringEncoding];
    [socket sendData:moveData toHost:address port:port withTimeout:- 1 tag:1];
}
```


Programming: Arduino

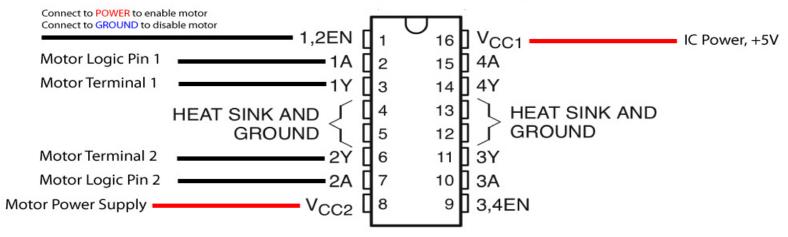
```
SpiSerial.print("set ip gateway 192.168.1.152");
SpiSerial.print(byte(13));
delay(500);
SpiSerial.print("set ip netmask 255.255.255.0");
SpiSerial.print(byte(13));
delay(500);
SpiSerial.print("set ip address 192.168.1.152");
SpiSerial.print(byte(13));
delay(500);
SpiSerial.print("set ip local 9000");
SpiSerial.print(byte(13));
delay(500);
SpiSerial.print("set ip host 192.168.1.151");
SpiSerial.print(byte(13));
delay(500);
SpiSerial.print("set ip protocal 1");
SpiSerial.print(byte(13));
delay(500);
SpiSerial.print("set wlan channel 1");
SpiSerial.print(byte(13));
delay(500);
SpiSerial.print("set wlan ssid GowanusBot");
SpiSerial.print(byte(13));
delay(500);
```


```
Serial.println(message);
if (message == "1#"){ digitalWrite(8, HIGH);}
else if (message == "2#"){digitalWrite(3, HIGH);}
else if (message == "5#"){digitalWrite(8, LOW);}
else {digitalWrite(3, LOW);}
```


Wireless Communication

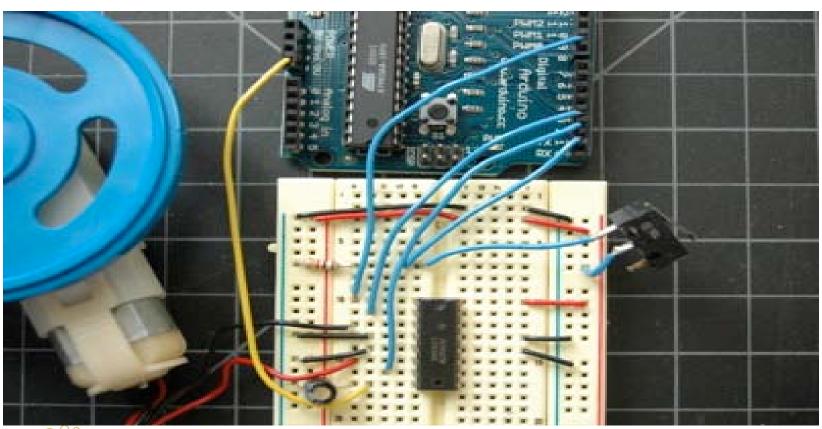
- ♦ WiFly Shield
- ♦ Cellular Shield
- ♦ UBD Protocol
- ♦ GUI sends commands
- ♦ Arduino makes decisions

Motor Design

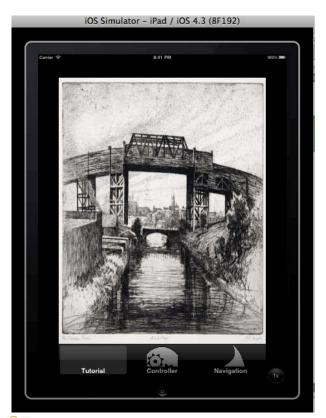

- ♦ Device Controller
- ♦ H-Bridge
- ♦ SN754410

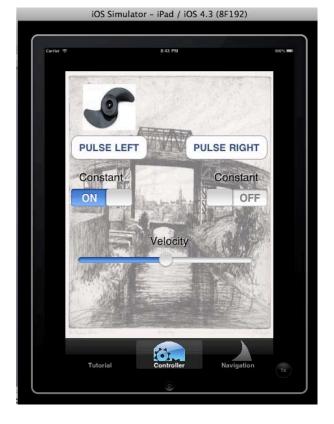
H Bridge

L293NE or SN754410


EN	1A	2A	FUNCTION
Н	L	Н	Turn right
Н	Н	L	Turn left
Н	L	L	Fast motor stop
Н	Н	Н	Fast motor stop
L	X	X	Fast motor stop

L = low, H = high, X = don't care


H Bridge



Graphic User Interface

Sensors

- ♦ Camera
- ♦ Temperature Sensor
- ♦ Dissolved Oxygen
- ♦ ph sensor

Check List

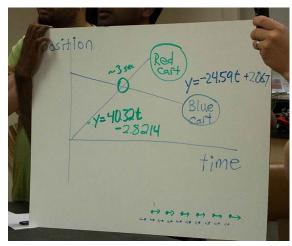
- ♦ I-Device App
- ♦ Robot Frame
- ♦ Moving Robot
- ♦ Sensors
- ♦ Sending Video

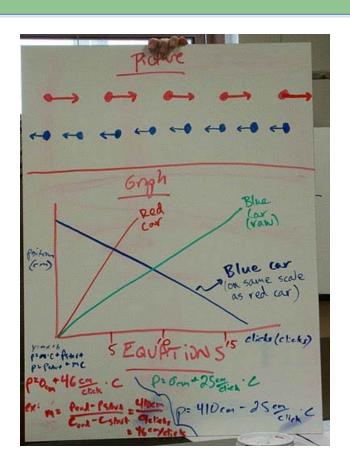
Beyond Six Weeks


- ♦ Education App
- ♦ kits that students build (seaperch)

Lesson

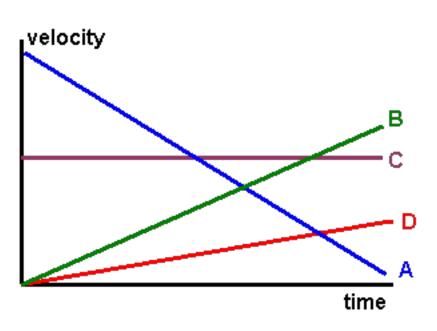
- ♦ Physics Modeling
- **♦ NXT Robot**





Lesson

- ♦ Graph
- ♦ Share



Lesson

♦ Students Program

