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Goals

• To design and synthesize a biomechanical fish tail 
towards the realization of a robotic thresher shark

– Fish tail will vibrate at 1 Hertz

– System is controlled with pulse width modulation (PWM)

– Fish tail motion which mimics Thresher Shark’s tail

• To validate the design using image analysis

– ProAnalyst software for motion tracking

– Fourier analysis
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• System design
– SolidWorks CAD & CAM
– CNC mold creation
– Mold fabrication
– Mechanical assembly

• Experiments
– Image Analysis

• Conclusions

• Future work
– Remotely operated mechanical fish
– Energy scavenging

Outline
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Background (1)

Miniature biommetic 
vehicles propelled by Ionic 
Polymer Metal Composites 
(IPMCs)

Underwater robotics, 
Dynamical Systems Laboratory,

NYU-Poly

Miniature biommetic vehicles 
propelled by watertight 
miniature servomotors and 
passive tail elements
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Background (2)

Ph.D. students interacting with elementary students at New 
York Aquarium, raising interest in STEM topics and 
awareness in different fields of engineering

Underwater robotics, 
Dynamical Systems Laboratory,

NYU-Poly
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Motivation

• Understanding the fluid dynamics of aquatic animals has resulted 
in the design and realization of bio-inspired vehicles

• Creating biomimetic underwater vehicles with multiple applications

• Decreasing ecological impact

• Interacting with organisms to help carry out ecological rescue 
operations and reduce environmental contamination

• IPMC’s as an energy harvesting device

Aureli, et al, 2009
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Applications

Aalbers et al, 2010. 
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Shark Morphometric 
Equations

• FL = a×TL + b

• Weight= a × FL + b

• TL-FL = ΔL

Kohler, et al., 1996 

(FL)

(TL)
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Dimensions of Model

12 cm
17 cm

Fork Length

Tail Length

52 cm
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Locomotion Patterns

Lauder, 2000
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Fish and Slender Beams

Biomimetic shark tail

Caudal fin of Thresher Shark

Vertebral Column – A slender beam with contracting muscles



12/28

McCauley & Heyer, 2007

Muscular anatomy
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Skeletal anatomy

McCauley & Heyer, 2007
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Flammang and Lauder , 2007

Tail anatomy

• Anatomy of intrinsic caudal muscles, 
overlaid on a computer 
microtomography (µCT) scan of a 
bluegill sunfish tail. 

• Arrows in the bottom diagram 
indicate the direction of movement 
of fin components caused by muscle 
contraction as determined from 
electrical stimulation experiments. 
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Caudal Fin Radiograph

• Caudal skeleton of Isistius 
brasiliensis. Specimen 
(SIO 52-413-5A), 386 mm 
long, from equator at 
100°00' W. long.

• Caudal vertebrae counted as 
22, the last 2 interpreted as 
much elongated.
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Experimental Design

Motor

Basic 
Stamp
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Preliminary Tests on some 
beams and results

• We tested stainless steel and clear plastic beams in air and water

• Water added mass effect creating dampening force on beams
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CAD/CAM

Thresher Shark inspired fish tail 
realized through Computer 
Aided Design/Manufacturing 
(CAD/CAM) software
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Mold Design

• PartWorks 3D translates SolidWorks files to ShopBot for CNC
• After allowing 2 ½ days for curing we removed silicone from 

mold and trimmed excess reservoirs
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Motor Assembly

• CAD designed motor encasement (left)

• Manufactured motor encasement (right)



21/28

Data Points for Tracking

• Points were put on tail at ¼ 

length, ½ length, ¾ length, 

and end to be tracked with 

the image software analyzer 

ProAnalyst. 

• Tail fixed in place 

over small tank and 

recorded digitally 

for analysis.
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Experimental Footage

• Points placed on tail allow video tracking using ProAnalyst software to 
graphically represent displacement data
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Biomimetic locomotion

• Fish tail movement shown graphically is lagging sinusoidal 
waveform

Lag

Lag
Lag
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Experimental Parameters

• Fourier analysis of amplitude and frequency
• Most prevalent movement achieved 1.05 Hz
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Conclusions

• In this presentation we:

• Presented the design and realization of a biomechanical fish tail 

inspired by the Thresher Shark

• Experimentally validated the biomechanical fish tail via image 

analysis

• Outlined the future implementation of the biomechanical tail as a 

fully realized remotely operated mechanical fish and energy 

scavenger
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Future Exploration

Future Milestones:

– Closely evaluate impact of adjusted PWM 

– Flow visualization

– Mimic flow phenomena of Thresher Shark

– Explore attachment of IPMC’s for energy harvesting 

– Add anterior section of body for buoyancy and onboard 

electronics

Future Applications:

– Applications in aquatic veterinary medicine – chemical 
immobilization of fish in streams, lakes, ponds and the seas

– Energy scavenging from environment
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Buoyancy Apparatus

Mahmoud (L) and Alvin (R), conducting 
hydrostatic studies on a modular submersible
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