The SMART

Weather Balloon - A Mechantronics Demonstration Project

Presented at:
INSPIRE CONFERENCE
University of Southern Mississippi
October 16, 2004

Ronald Occhiogrosso

Lennox Henry $\underset{\substack{\text { Wastington Irving High School } \\ \text { New Yort, Ny 100 }}}{\text { Len }}$

Objective

- To engage students and capture their interests. How? By using the

Mechatronics concepts learned in
this RET program, in the creation of
a device that will:
-Fly \& Take Real Weather data
-Have students plot their results

Data Retrieval for Students:

StampDAQ Excel

- FOR counter $=2$ To DATACOUNT STEP 2

```
l
    c
    READ countri, resultHI
```



```
    \begin{subarray}{c}{\mathrm{ height height +1}}\\{\mathrm{ READ CounerH, rea}}\end{subarray}
    l}\begin{array}{l}{\mathrm{ READ CounterRH, resulLIOWBYT}}\\{\mathrm{ CounerRH = CouncrerH +1 %}}
    ComulerH = CounererH +1 
    comererf = commerR + 
    \
```


Future Work

- Replace the meteorological balloon with a blimp that can hold a sufficient volume of helium to sustain the 235g payload.
- Add on an additional gondola with three thruster-engine fans to allow for added up/down \& lateral RC movement
- Addition of transceiver chip to gondola and creation of another BS2 ground setup with a transceiver or receiver to capture real time data.
- Use SMART Weather Balloon in the chemistry curriculum for gas laws, and in Physics for Force Balances (Static/Dynamic Equilibrium).
- Contact Realtors: would aerial photos of homes be worth \$\$\$

Outline

-Driving Force -grab students' attention
-Mechatronics-blend of mechanics, control theory, computer science, and sensor/actuator technology to design products
-Objective- Weather Station, Flight, T, P, RH -Theory
-Isolines, T, RH, P; Sling Psychrometer -Lift-Force
-Homework Board Circuitry w/ SMART Weather Balloon
-Results \& Conclusions
-Future Work \& References

Theory - Earth Science

-Isolines: Temperature, RH, $\mathrm{P}_{\text {bar }}$

- $F_{\text {lift }}=\left(D_{\text {air }}-D_{H e}\right) V g$
- $z=(R T / g M) \ln \left(p_{\mathrm{o}} / p\right)$

Trial\#1 Data

Allucue Temp	RH(8)	P ${ }^{\text {amm }}$	Commens
- ${ }^{225}$	${ }_{6}^{68}$	100	
$1{ }^{25}$	${ }^{\text {®as }}$	Osm	
	${ }_{\text {ces }}^{\text {ces }}$	cosp	
- 238	${ }_{\text {®83 }}$	Oss	
	${ }_{665}^{878}$	${ }_{\text {Oen }}$	
$\bigcirc{ }^{285}$	\%s8	\%es	
- ${ }^{281}$	B4.	${ }^{\text {оя }}$	

Driving Force: Motivational

 Moment

HWB Circuitry \& the Balloon: the Brains of the Show

Results and Conclusions

- The SMART Weather Balloon successfully captures T, RH, altitude, $\mathrm{P}_{\mathrm{bar}}$ data from 0 to 9 m high.
- Variations in T, RH, and $\mathrm{P}_{\mathrm{bar}}$ are obvious. T \& RH data vary randomly - as expected
- Extend data collection to other spots at: 1m, $2 \mathrm{~m}, 3 \mathrm{~m}$, etc from original position.
- Students then plot the isoline data

Acknowledgments

We would like to thank,

Project Director Professor Vikram Kapila
Project Instructor Sang-Hoon Lee
A special thank you to Anshuman Panda and Hong Wong for assisting with Pbasic Code \& StampDAQ Excel. Thank You to Alessandro Betti for giving us 'free reign' to his machine Shop.
Thank You Parallax, Inc. for your kinds donations \& of course the RET program of the National Science Foundation for making this program possible,
GRANT\#EEC-0227479

