

Abstract—In this paper, we present a Matlab and Simulink

based software platform that enables the use of inexpensive
microcontrollers for data acquisition and control tasks. The
proposed framework is well suited for data acquisition and
control tasks that require graphical user interface (GUI) and/or
advanced computational capabilities but do not require
stringent hardware performance. We illustrate the efficacy of
our data acquisition and control technique by performing
position control of a DC motor using a Basic Stamp 2 (BS2)
microcontroller and our Matlab data acquisition and control
toolbox.

I. INTRODUCTION

ata acquisition and control boards, also known as DAC
boards, are used in virtually every field of engineering

to establish communication between sensors/actuators and
decision making devices, e.g., a PC. In academia these
boards are used from entry level laboratory experiments for
physics and chemistry to upper level laboratory experiments
in automatic controls and signal processing.

A variety of PC-based DAC boards are available from
vendors such as Advantech [1], National Instruments [2],
and Quanser [3]. Furthermore, DAC solutions from several
of these vendors support icon-based programming
environments (e.g., Simulink [4] and LabVIEW [5]) for
implementing measurement and control algorithms.
Unfortunately, many PC-based DAC boards tend to be
expensive. In a recent price comparison of several Matlab
and Simulink supported PC-based DAC boards of different
form factors (e.g., PCI, ISA, and PCMCIA), we determined
that these DAC boards cost from $500 to several thousand
dollars. Moreover, many of these DAC boards include an
array of features (e.g., high sampling rates, high resolution
analog to digital converters (A2Ds), etc.) that a typical user
may not even utilize to the fullest potential.

 The existing PC-based DAC boards supporting
Simulink’s icon-based programming environment require
several additional software technologies. Specifically, in
order to incorporate functionality of a particular Matlab-

This work was supported in part by the National Science Foundation

under an RET Site Grant 0227479 and a GK-12 Fellows Grant 0337668,
and the NASA/NY Space Grant Consortium under Grant 39555-6519.

1Electrical and Computer Engineering Department, Polytechnic
University, Brooklyn, NY, 11201.

2Mechanical, Aerospace, and Manufacturing Engineering Department,
Polytechnic University, Brooklyn, NY, 11201.

supported DAC board, the user needs Matlab’s Real-Time
Workshop (RTW) toolbox and a C compiler. In addition, the
user must provide a real-time environment (e.g., Real-Time
Windows Target for Matlab-based DAC solutions, Real-
Time Extension for Quanser-based DAC solutions, etc.) for
real-time execution of the designed algorithm. However, in
some cases, the user may not require real-time execution of
the algorithm (e.g., environmental monitoring). Thus, similar
to PC-based DAC hardware solutions, the software
requirements for the existing PC-based DAC solutions may
be excessive.

In contrast to the PC-based DAC boards, microcontrollers
are inexpensive devices (costing only a few tens of dollars),
which are widely used for embedded computing. However, a
majority of microcontrollers require programming using one
or other embedded programming variants of high-level
programming languages (e.g., Basic, C, Java, etc.). In
addition, many low-cost microcontrollers do not allow
floating-point numerical computations that may be needed to
implement advanced feedback control algorithms.

In this paper, we present a Matlab and Simulink based
software platform that enables the use of inexpensive
microcontrollers for data acquisition and control tasks.
Specifically, we develop a low-cost PC-based DAC board
using Parallax Inc.’s BS2 microcontroller [6]. Furthermore,
we provide a library of BS2 functions for Simulink. Next,
we exploit Simulink’s icon-based programming environment
to implement user-defined algorithms in a block diagram
format. In addition, we build upon the foundation of [7] to
exploit Simulink and Matlab’s built-in serial communication
capabilities to communicate with various sensors and
actuators connected to a BS2 microcontroller. The BS2
microcontroller was selected to illustrate our DAC toolbox
since Matlab/Simulink device library for BS2 can be easily
developed and implemented by exploiting BS2’s Basic style
instructions that are simpler vis-à-vis instruction sets of other
microcontrollers. Moreover, our BS2 device library requires
only minor modification for use of new types of sensors and
actuators with our Matlab DAC toolbox.

The framework of this paper is significant for several
reasons. First, by extending the capabilities of Simulink to
low-cost microcontrollers, our method overcomes two
limitations common to most microcontrollers, viz., the lack
of advanced icon-based software interface for efficient
development of control algorithms and the lack of a GUI to

Matlab Data Acquisition and Control Toolbox
for Basic Stamp Microcontrollers

Anshuman Panda1, Hong Wong2, Vikram Kapila2, and Sang-Hoon Lee2

D

allow intuitive interaction. Second, our DAC platform is very
economical since it requires the use of only an off-the-shelf
BS2 microcontroller (under $50) and obviates the need for
overhead software such as RTW required for most PC-based
DAC systems, thus further lowering the cost of acquiring
such a system. This affords an opportunity to students to
conduct industry-style rapid control prototyping and
hardware in the loop experiments. Third, the ability to
interface and program microcontrollers using the intuitive
graphical programming environment of Simulink provides
the flexibility and versatility of equipping a wide array of
undergraduate-level laboratories (physics, measurement
systems, feedback control, and mechatronics) at an
economical cost using our DAC platform. Fourth, our
microcontroller-based DAC system is inherently portable
due to its small size and low power requirement, extending
its benefits to students who can acquire their personal DAC
system for capstone design projects and for experimental
research.

II. COMPONENTS OVERVIEW

Our Matlab based BS2 DAC system is composed of two
main components, hardware and software. The hardware
required for this DAC system is the BS2 microcontroller and
user selectable sensors and actuators. The software required
for this system is Matlab with serial communication
capability and Simulink.

A. Basic Stamp 2 Microcontroller

The BS2 is a popular microcontroller used both in hobby
and industrial projects. The BS2 has 16 general-purpose
digital input/output (I/O) pins. Throughout the rest of this
paper, we will refer to these digital I/O pins as pins. The high
state on a BS2 pin refers to a 5VDC and a low state on a
BS2 pin refers to a 0VDC (ground potential). See [6] for
further details on the BS2 microcontroller hardware.

Additional hardware used in this paper is the Board of
Education (BOE) development board. The BOE provides i)
built-in circuitry for programming the BS2 microcontroller
and serial data communication, ii) an interface for a power
supply, iii) user accessibility of the BS2 pins, and iv) a
breadboard area for custom circuits. In this paper, the BOE
is an interface allowing for easy connectivity to sensors and
actuators.

B. DB-9 Serial Cable:

Serial communication from the BS2 to a PC is performed
through a DB-9 serial cable. This cable facilitates data
communication between the BS2 and the PC and allows
programming the BS2 from the PC. See [7] for further
details on serial communication and DB-9 serial cable.

C. Matlab

Matlab is the primary software environment for our BS2
DAC toolbox. In addition to providing functionality for the
Simulink toolbox, the Matlab scripting language allows for

high level development of functions that can interface with
specific hardware. We exploit this capability by using built-
in serial communication functions provided by Matlab,
versions 6.1 and higher.

D. Simulink

Simulink is MathWorks’ icon-based programming
environment that allows the user to construct a block
diagram representation of a system. In a Simulink block
diagram, the user can insert various blocks to construct or
simulate system dynamics, control architectures, etc. The
Simulink toolbox contains many libraries whose elements
can be embedded in Simulink block diagrams. Simulink also
provides user-defined blocks, in the form of s-function
blocks, which can be modified to perform user-defined tasks.
Furthermore, every Simulink block allows for a set of
“callback functions,” which execute upon specific events
when running a Simulink block diagram. For example, in
Figure 1, the “Simulation start” callback function,
TotalCompile, will execute before the Start state of the
Simulink block diagram. See [8] for further details on
callback functions.

III. SOFTWARE INTERFACE

Referring to Figure 1 the software interface of our data
acquisition and control system consists of two main
components: i) a Simulink model file named Template.mdl
and ii) a block library named BS2Library. Template.mdl is
the file where the user designs the Simulink block diagram
for interaction with the BS2. BS2Library is the library of
additional blocks that communicate data with sensors and
actuators connected to the BS2 microcontroller.

A. Template.mdl

The Template.mdl model file is an empty Simulink block
diagram, where the user designs the Simulink block diagram
for interaction with the BS2. The key property of
Template.mdl is the inclusion of a function within the
callback parameters of this Simulink model file, where this
function is to be executed before the start of the block
diagram. Furthermore, renaming this file still preserves this
property, whereas opening a new Simulink model file does
not.

When starting the Simulink block diagram, the callback
function called TotalCompile is executed first. This function
performs several important tasks and enables the
communication between Matlab and the BS2
microcontroller. Details of this function are provided in a
subsequent section.

B. BS2Library

The BS2Library is a custom library for Simulink, which
provides blocks (in the form of s-functions) that interface
with sensors and actuators connected to the BS2. See Table I
for a complete listing of sensor and actuator blocks currently
available. Furthermore, this library contains a block labeled

IOBlock that enables serial communication between the BS2
microcontroller and Matlab and computes the sampling
period of a block diagram. This block is required in all user-
designed Simulink block diagrams that will incorporate
sensors and actuators connected with the BS2
microcontroller. Figure 2 provides a graphical description of
the BS2 Library.

1) Sensors and Actuators: Sensor and actuator blocks
provided in the BS2 library are used to communicate with
sensors and actuators connected with the BS2
microcontroller. Each sensor or actuator block contains
block parameters that need to be set for appropriate
hardware configuration. The following describes hardware
settings and parameter requirements of each block.

RCtime block: This block measures the time taken by a
specific pin on the BS2 to change its state. It is used to
obtain measurements from a variable resistance/capacitance
sensor. The variable resistance/capacitance sensor is required
to be connected in a series resistor-capacitor circuit with a
constant capacitor/resistor, i.e., if the sensor is a variable
resistor, a constant capacitor is required, and vice versa. See
[9] for further details on how to construct an RC circuit. The
RCtime block requires two parameters. The first parameter is
the BS2 pin on which the BS2 monitors the state of the
resistor-capacitor circuit. The second parameter is the initial
state of the resistor-capacitor circuit.

AtoD_LTC1296 block: This block can receive voltage
data from an LTC1296 A2D IC. The LTC1296 A2D IC,
manufactured by Linear Technology Inc., is a 12-bit A2D
(11-bit plus an additional sign bit) that has 8 single input
channels, which can be used as 4 differential inputs, and
requires a +/-5VDC power supply. Furthermore, this IC is
controlled by the BS2 via the serial peripheral interface
(SPI). The AtoD_LTC1296 block requires five parameters.
The first parameter is the BS2 pin on which sensor data (in
the form of a voltage signal) from the LTC1296 IC is sent to
the BS2. The second parameter is a specific channel on the
LTC1296 IC that contains the sensor data. The third
parameter is the BS2 pin from which the BS2 sends the
“clock” signal to the LTC1296 IC. The fourth parameter is
the “chip select” pin and corresponds to the BS2 pin that
enables operation of the LTC1296 IC. Finally, the fifth
parameter is the BS2 pin from which the configuration
information for the LTC1296 IC is sent. See [10] for further
details on the LTC1296 IC.

ServoMotor block: This block controls standard servo
motors connected to a BS2 microcontroller, one of which is
the Parallax servo motor manufactured by Futaba Corp. The
ServoMotor block requires one parameter, the BS2 pin
which transmits a pulse-width modulated signal that controls
the servo motor. See [11] for further details on how to
operate a servo motor from the BS2.

DtoA_MAX537 block: This block sends voltage data
supplied by the Simulink block diagram to the MAX537
D2A IC. The MAX537 D2A IC, manufactured by Dallas

Semiconductor Inc., is a 12-bit D2A (11-bit plus an
additional sign bit) that has 4 single output channels, which
can be used as 2 differential outputs, and requires a +/-5VDC
power supply. The MAX537 IC requires four parameters.
The first parameter is the BS2 pin from which actuator data
(in the form of voltage output) is to be sent to the MAX537
IC. The second parameter is a specific output channel on the
MAX537 IC. The third parameter is the BS2 pin from which
the BS2 sends the “clock” signal to the MAX537 IC. Finally,
the fourth parameter is the “chip select” pin. See [12] for
further details on the MAX537 IC.

Finally, sensor and actuator blocks are responsible for
writing to or reading from global variables, which are to be
sent or received from the BS2, respectively. Details of these
operations are provided in a subsequent section.

2) IOBlock: The main purpose of this block is to i) initiate
serial communication between the BS2 microcontroller and
Matlab, ii) send and receive data between BS2 and Matlab,
and iii) terminate this serial communication link.

The initiation and termination of serial communication is
performed by two functions, OpenSerialPortScript and
CloseSerialPortScript, which are executed at the Start and
Stop state of the Simulink block diagram, respectively. For a
set of sensors and actuators to be used in a Simulink block
diagram, the IOBlock performs serial communication with
the BS2 such that the order of data received from sensors
and sent to actuators is determined by the TotalCompile
function. Details of serial data communication are provided
in a subsequent section.

The IOBlock is programmed to be the first block executed
in the Simulink block diagram. This ensures that all sensor
and actuator data in Matlab is first received and sent,
respectively, which then is used by the appropriate sensor
and actuator blocks in the Simulink block diagram.

Aside from serial communication, another important task
of IOBlock is to provide the sampling period of a given
Simulink block diagram. This feature allows blocks that
require the sampling period to be used properly, e.g., an
integrator block. We denote the sampling period as the
amount of time required for one cycle of the Simulink block
diagram to execute. The sampling period provided by
IOBlock is an averaged sampling period that is calculated by
averaging the time taken to run a specified number of cycles
of the Simulink block diagram. The number of cycles used
for averaging is user definable, such that the user can adjust
the resolution of the sampling period, i.e., a large number of
cycles will provide a finer resolution of the sampling period
compared with a small number of cycles. However, this
procedure of obtaining a sampling period does not provide
the exact sampling period for each Simulink block cycle,
thus, this DAC toolbox does not enforce any real-time
requirements, i.e., enforcing a specific sampling period for
the Simulink block diagram is not permissible.

IV. SIMULINK DIAGRAM DETAILS

This section describes in detail the sequence of tasks that
are performed before running a Simulink block diagram. In
particular, we outline the set of tasks that the function,
TotalCompile, performs. Finally, in this section we will
describe the serial data communication between Matlab and
BS2.

A. TotalCompile

TotalCompile is composed of a sequence of sequential
tasks.

1) Using Global Variables: Global variables are used in
order to share data with any sensor or actuator block from
the BS2 library.

2) Storing Sensors and Actuators Blocks: After defining
global variables the TotalCompile function reads the
Simulink model file as a text file. In this process the function
looks for all the blocks (by name) that are present in the
Simulink block diagram that match with the ones stored in
the BS2 library. It should be noted that for this task to be
performed correctly, the Simulink model file must be saved
before starting the Simulink block diagram. Unsaved
Simulink model files may not include the most recent
changes to the sensor or actuator block parameters.
Furthermore, if a user adds or removes sensor or actuator
blocks to or from the block diagram, this unsaved Simulink
model file may not reflect these recent changes.

When a matching block is found, it is then categorized as
a sensor or an actuator. The type of block is then used in
conjunction with the specified block parameters to be stored
in a data structure depending on its category, e.g., a sensor or
an actuator structure. Thus, for multiple sensor blocks in a
Simulink block diagram, an array of sensor structures is
allocated. Similarly, an array of actuator structures is
allocated. The sensor array stores all sensor blocks present in
the Simulink block diagram, and an actuator array stores all
actuator blocks present in this diagram. If there are no sensor
or actuator blocks present in the diagram a “null” object is
stored indicating an empty array.

The order in which sensor blocks are stored in the array is
the same as the order in which the sensor blocks are listed in
the text file of the Simulink model file. The actuator array is
organized in a similar manner.

Since in a Simulink block diagram it is possible to have
multiple blocks with the same name, two parameters are used
to determine each block uniquely. The first parameter is a
pin of the sensor/actuator connected to the BS2. However,
certain sensors or actuators devices may have multiple
channels, in which case, a second parameter is used to store
the channel information. The sensor or actuator array
information is later used to organize data sent via serial
communication.

3) Generating Matlab and PBasic Code: The sensor and
actuator arrays are used to generate Matlab and PBasic code.
The PBasic code, which is used to program the BS2, is

generated first. We note that within the BS2 block library,
every sensor or actuator block has an associated PBasic
code. Thus, for a given sensor or actuator structure, a
corresponding PBasic code can be provided. Finally, the
PBasic code is organized as follows: i) BS2 waits for Matlab
to send the actuator data, ii) this actuator data drives the
actuators, iii) data is gathered from the sensors, and iv)
sensor data is sent to the Simulink block diagram. Next, a
section of the IOBlock’s Matlab code is generated to
facilitate serial communication between Matlab and BS2. In
particular, this Matlab code sends and receives the same
amount of data that the BS2 receives and sends, respectively.

4) Programming the BS2: Referring to Figure 3,
programming the BS2 involves i) the tokenization of the
PBasic code and ii) the sending of this tokenized code to the
BS2 via serial communication. The tokenization process
involves sending the PBasic code to a C++ executable
program. This program performs tokenization of the PBasic
code using a tokenizer library provided by Parallax Inc. and
stores the result in a text file. The tokenized code is
organized as a set of data packets to be sent to the BS2. See
[13] for details on how to tokenize PBasic code. Next, a Java
program transmits the tokenized PBasic code packet by
packet to the BS2 using serial communication. See [13] for
details on how to program the BS2 via serial communication.
After attempting to program the BS2, a Boolean is set to true
or false depending on the success or failure of programming
the BS2, respectively.

5) Starting a Simulink Block Diagram: If the BS2 was
successfully programmed, then the Simulink block diagram
will start, otherwise the block diagram will stop and produce
an error message on the Matlab command window.

B. BS2 and Matlab Serial Communication

Referring to Figure 4, BS2 and Matlab communicate with
each other using the serial communication port. Both BS2
and Matlab have built-in functions that provide serial
communication capabilities. It is important to note that all
sensor data is sent from Matlab as one packet and all
actuator data is received by Matlab as one packet through
serial communication. Sensor data in the sensor packet can
be retrieved by the corresponding sensor blocks in the
Simulink block diagram, whereas data from the actuator
blocks are packaged into a single packet for transmission to
the BS2.

The use of packets for data communication between
Matlab and BS2 is efficient compared with the transmission
of individual, disjoint sensor or actuator data. In transmitting
packets for data communication, the amount of information
needed to be sent via serial communication is reduced, i.e.,
in one sensor or actuator packet, the necessary data for serial
communication is one start and stop bit, whereas for
individual, disjoint sensor or actuator data, multiple start and
stop bits are necessary for serial communication.

The IOBlock receives the sensor packet and stores the

data in a sensor global variable. The sensor packet received
from the BS2 is first converted to the appropriate sensor
data, i.e., a numerical value dependent on the sensor type,
and is then stored in the sensor global variable. The IOBlock
transmits data from the actuator global variable to the BS2
for execution. In constructing the actuator global variable,
each actuator block converts the numerical value of their
actuator data into a set of bytes. Next, the sets of bytes for
all actuator blocks are packaged into a packet and saved into
the actuator global variable. See Figure 4 for a graphical
description of this packet. Lastly, data communication
between BS2 and Matlab will continue until the Simulink
block diagram is stopped.

C. Data Organization

Both sensor and actuator data transmitted through serial
communication is organized in a specific order. As seen in
Figure 5, the order in which data is stored for a sensor packet
is the same as how the sensor structures are ordered in the
sensor array. Furthermore, the actuator packet is ordered in a
similar manner.

Each BS2 library block has access to both sensor and
actuator arrays and sensor and actuator global variables.
Each sensor or actuator used in the Simulink block diagram
is uniquely determined based on a pin number that the sensor
or actuator uses for connection with the BS2 and the device
channel (if device controls multiple channels). Depending on
the pin number and device channel, each sensor or actuator
block can search for its position in its corresponding sensor
or actuator array. See Figure 5 for an example of a sensor
block with its corresponding position in the sensor array.
Once the position of a sensor block is determined, the
appropriate sensor data can be retrieved from the sensor
global variable. Also, an actuator block can store actuator
data to the actuator global variable in a similar manner.

V. EXAMPLE – DC MOTOR CONTROL

For illustrative purposes, in this example, we explore a
DC motor control experiment using the BS2 microcontroller
and our Matlab DAC toolbox. The DC motor test-bed
consists of an armature controlled DC motor, a continuous
rotation potentiometer, a tachometer, and a power amplifier.
This test-bed, shown in Figure 4, is manufactured by
Quanser Consulting Inc. The potentiometer outputs a +/-
5VDC signal corresponding to the absolute angular position
of the motor. The tachometer outputs a +/-5VDC signal
corresponding to the angular velocity of the motor. The BS2
supplies a controlled voltage signal to control the DC motor
angular position. The DC motor sends and receives analog
signals from the microcontroller using an LTC1296 A2D and
a MAX537 D2A, respectively. A MAX764 DC-DC inverter,
manufactured by Dallas Semiconductor Inc. [14] and
powered by the BOE’s +5VDC power supply, is used to
obtain a +/-5VDC power supply for the LTC1296 and
MAX537.

In this experiment, we used Matlab version 6.5, which has
a built-in serial communication library, in addition to
Simulink version 5.0. This experiment utilizes the classical
proportional-integral-derivative (PID) controller to control
the position of the DC motor. Referring to Figure 4, two
A2D blocks are used to import sensor data to the PID
controller, i.e., the block labeled AtoD_LTC_Pot sends DC
motor potentiometer data and the block labeled
AtoD_LTC_Tach sends DC motor tachometer data to the
PID controller. The output from these sensor blocks is then
connected to appropriate calibration gain blocks.
Furthermore, a D2A block labeled as DtoA_MAX_Motor is
used to transmit the PID controller output to the DC motor.

A. Experimental Results

A classical PID controller is implemented in Simulink to
control a DC motor using the BS2 library. Specifically, an
analog PID controller is designed and implemented using
Simulink’s Euler approximation integration algorithm [8]
(with a sampling period of 0.13sec). For illustrative
purposes, two sets of performance specifications are used to
design corresponding PID control gains that are used to
obtain experimental response of the motor for 0 degrees and
90 degrees angular position commands for the motor arm.

The PID control gains used in this experiment are
computed using the analytical model of the DC motor under
the PID feedback control. It can be shown that a third-order
transfer function with one real pole, a pair of complex-
conjugate poles, and a finite zero captures the closed-loop
transfer function of the DC motor with the PID controller
(see, Section 5.4 of [15] for a similar transfer function).
Next, by specifying the desired damping ratio and natural
frequency of complex-conjugate closed-loop poles and the
location of the real pole as 0.69, 1.16, and -47.8479,
respectively, the PID control gains are computed to be

28.1Kp = , 06.1KI = , and 21.0KD = . Following

[15], for these control gains it can be shown that the closed-
loop response theoretically exhibits a 2 percent settling time
of 5sec and a percent overshoot of 25%. Referring to Figure
6, which shows experimental time history of the DC motor
arm angular position, these control gains were used from 0 to
58sec. As evidenced from Figure 6, the experimental
response exhibits an average experimental 2 percent settling
time of 9.89sec and a percent overshoot of 29.36%. Next,
by specifying the desired damping ratio and natural
frequency of complex-conjugate closed-loop poles and the
location of real pole as 0.69, 0.58, and -24, respectively, the

PID control gains are computed to be 32.0Kp = ,

13.0KI = , and 19.0KD −= . For these control gains it

can be shown that the closed-loop response theoretically
exhibits a 2 percent settling time of 10sec and a percent
overshoot of 25%. Referring to Figure 6, these control gains
were used from 58 to 105sec. As evidenced from Figure 6,
the experimental response exhibits an average experimental

2 percent settling time of 11.03sec and a percent overshoot
of 31%.

VI. CONCLUSION

In this paper, we developed an inexpensive data
acquisition and control system by exploiting the serial
communication capabilities of Matlab and the BS2
microcontroller. Using the advanced features of Simulink,
our software environment allows for the generation of
PBasic code for a variety of sensors and actuators,
programming of the BS2 microcontroller, and data
communication between BS2 and Matlab. Furthermore, a
DC motor control experiment was conducted to show the
salient features of our DAC toolbox. Specifically, a PID
controller was implemented in a Simulink block diagram to
control the DC motor arm position.

REFERENCES

[1] Online: http://www.advantech.com/, website of Advantech Co.
[2] Online: http://www.ni.com/, website of National Instruments Corp.
[3] Online: http://www.quanser.com/choice.asp, website of Quanser

Consulting Inc.
[4] Online: http://www.mathworks.com/products/simulink/, website of

MathWorks Inc., developer and distributor of Simulink.
[5] Online: http://www.ni.com/labview/, website of National Instruments

Corp., developer and distributor of LabVIEW.
[6] Online: http://www.parallax.com/detail.asp?product_id=BS2-IC,

website of Parallax Inc., developer and distributor of the Basic Stamp
2 (BS2-IC) microcontroller (access link for BS2-IC product
information).

[7] Y. F. Li, S. Harari, H. Wong, and V. Kapila, “Matlab-Based
Graphical User Interface Development for Basic Stamp 2
Microcontroller Projects,” Proceedings of the American Control
Conference, Boston, MA, pp. 3233–3238, 2004.

[8] Online: http://www.mathworks.com/access/helpdesk/help/pdf_doc/
simulink/sl_using.pdf, website of MathWorks Inc., developer and
distributor of Simulink (access link for documentation on Simulink
callback functions).

[9] Online: http://www.parallax.com/dl/docs/cols/nv/vol1/col/nv15.pdf,
website of Parallax Inc., developer and distributor of the Basic Stamp
2 microcontroller (access link for documentation on the RCtime
instruction for the Basic Stamp 2 microcontroller).

[10] Online: http://www.linear.com/pc/downloadDocument.do?navId=H0,
C1,C1155,C1001,C1158,P1484,D3526, website of Linear
Technology Corp., developer and distributor of the LTC1296 A2D
(access link for product information).

[11] Online: http://www.parallax.com/dl/docs/prod/motors/stdservo.pdf,
website of Parallax Inc., of the Basic Stamp 2 microcontroller (access
link for servo motor product information).

[12] Online: http://pdfserv.maxim-ic.com/en/ds/MAX536-MAX537.pdf,
website of Dallas Semiconductor Inc., developer and distributor of the
MAX537 D2A (access link for product information).

[13] Online: http://www.parallax.com/html_pages/downloads/tokenizer/
tokenizer.asp, website of Parallax Inc., developer and distributor of
the PBasic tokenizer library (access link for the Parallax tokenizer
library and the tokenizer documentation).

[14] Online: http://pdfserv.maxim-ic.com/en/ds/MAX764-MAX766.pdf,
website of Dallas Semiconductor Inc., developer and distributor of the
MAX764 DC-DC inverter (access link for product information).

[15] R. C. Dorf and R. H. Bishop, Modern Control Systems. Addison
Wesley, Menlo Park, CA, 2005.

TABLE I:
SENSOR AND ACTUATOR BLOCK DESCRIPTION

Name Description

PinStateIn
Sensor block giving the state of a BS2 pin, which is
either high (5Volts) = 1 or low (0Volts) = 0

RCtime
Sensor block that measures the time it takes for a
pin to change its state from high (5Volts) to low
(0Volts), or vice versa

AtoD_LTC1296
Sensor block that provides voltage on a specified
channel from an LTC1296 analog to digital
converter (A2D)

PinStateOut
Actuator block which changes the state of a BS2
pin to high (5Volts) = 1 or low (0Volts) = 0

ServoMotor
Actuator block that turns a servo motor to a desired
position

DtoA_MAX537
Actuator block that outputs a specified voltage to a
MAX537 digital to analog converter (D2A)

Figure 1: Matlab data acquisition and control toolbox software
interface

Figure 3: Flow diagram for programming the BS2 microcontroller

Figure 2: Graphical description of the BS2 library

0 10 20 30 40 50 60 70 80 90 100
−45

−30

−15

0

15

30

45

60

75

90

105

120

135

Time (seconds)

D
C

 M
ot

or
 P

os
iti

on
 (

de
gr

ee
s)

Actual DC Motor Position
Desired DC Motor Position

PID Control gains are switched

Figure 6: DC motor position tracking response

Figure 4: Graphical description of serial communication between BS2
and Matlab

Figure 5: Example for sensor array data organization

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.01333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.01333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

