
Type X

TEAM 1

Ryan Pastor
Joseph Vayalattu
Dmitry Yeliosof
Yuvraj Mehta

Overview

- Proposal
- Problems and Solutions
- Features
- Project Specifications
- Assumptions and Limitations
- Design Process
- Block Diagram
- Circuit Diagram
- Computer Code
- Demo
- Cost Estimate
- Future Improvements
- Conclusion
- Special Thanks & Acknowledgements

Proposal

 A transformable vehicle that could alter its wheel position in order to navigate around difficult situations

 Designed to be used in a rough terrain environment

Advantageous in civilian as well as military applications

Problem I


 Wide body vehicles can have difficulty crossing narrow bridges

 Military vehicles and tanks need wider bridges to get across

Solution I

- Reduce the width of the wheels
- Alter wheel position by rotating 180 degrees
- Wide body vehicle can now cross a narrower bridge.

Problem II

 Parking in cities can be a hassle

Parallel parking is complicated

Solutions II

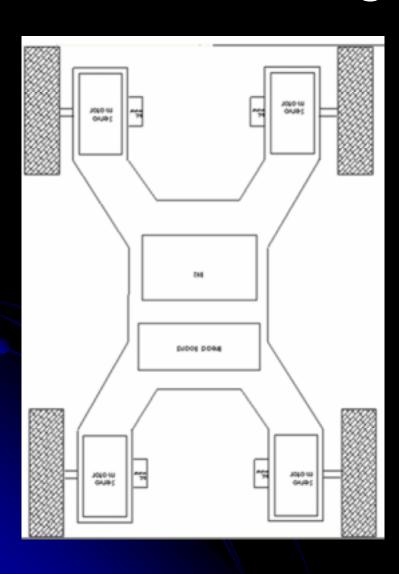
- Minimize the size of the vehicle
- Park at a different location
- Valet parking

Solutions II

- Wheels would turn 90 degrees
- Vehicle eliminates the need for parallel parking
- Vehicle can be prevented from being stolen

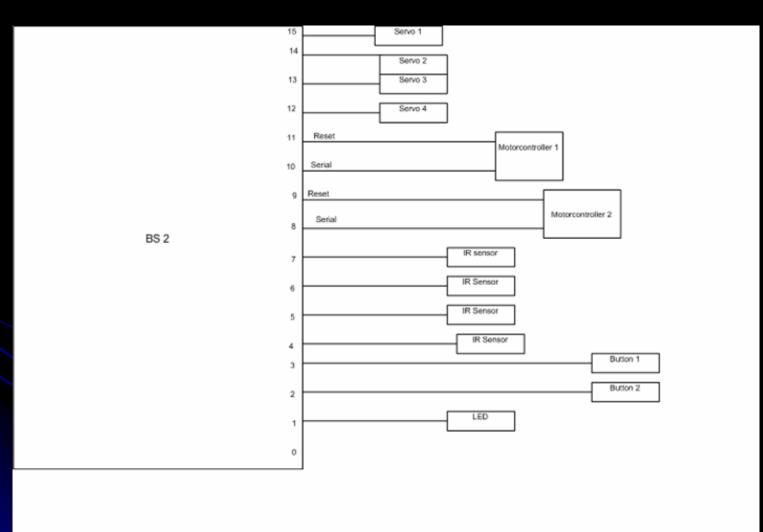
Features

- A military vehicle that alters wheel position to fit through narrow roads or bridges.
- Rotate wheels 90 degrees to eliminate the need to parallel park.
- Presents new safety feature to assure theft prevention.
- Master switch for emergency shutoff

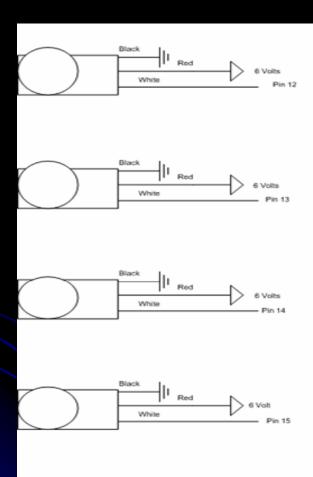

Project Specifications I (Hardware)

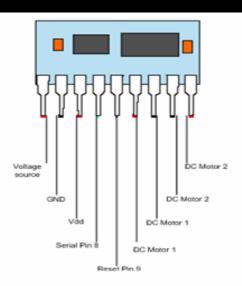
- BS2 and Board of Education
- 4 high torque servos
- 4 DC motor
- 2 motor controller
- 2 push button
- At least 3 IR sensor
- LED (optional)

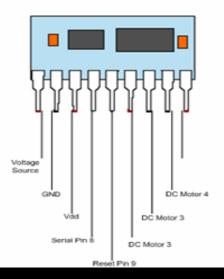
Limitations and Assumptions

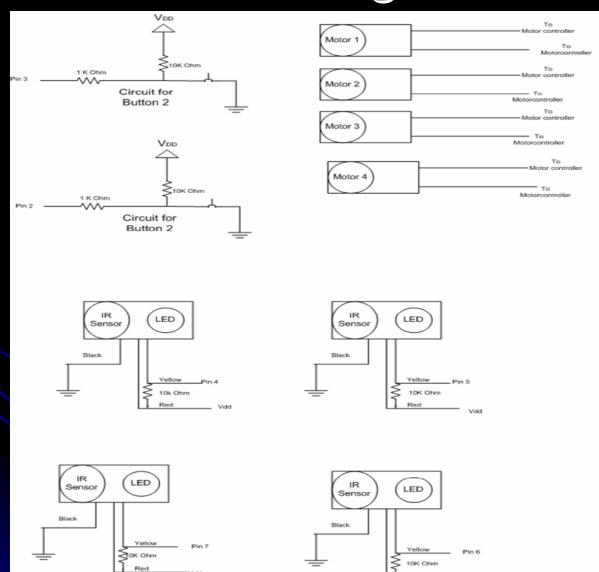

- A driver is required to operate the vehicle
 - Driver makes the decision to park or to alter wheel position.
- Obstacles must be large enough to be detected by the IR sensors.
- Sensors can be replaced.
 - Sonar, Proximity, Camera, etc.
- Speed is constant.

Design Process




- Design & build the Chassis
- Paint
- Mount Servos
- Mount DC Motors
- Wire circuitry
- Basic Stamp Code
- Testing


Circuit Block Diagram


Circuit Diagram I

Circuit Diagram II

START Button 1: Parking Button 2: Driving Keep Looking Drive Park Possible Parking Found Button 1: Stop and Turn the Wheels Inside Button 1: Keep Looking Button 2: Park Button NOT Pressed **BS2 Code** NC Park Turn Wheels Possible Narrow Bridge Detected? **Block Diagram** 90 Degrees Button 2 NOT Pressed Button 1 Pressec YES Move In Stop. Wait Until Button 2 is Pressec Stop Button 2 Pressed Button 1 to Move Out Turn the Wheels Inside Button 1 Pressec Start Moving Button 1 Pressed Keep Moving Move Out Detect the End of the Bridge (Detect the Ground) Button 1 Turn Wheels to Initial Position Pressed Agair Stop. Turn the Wheels Yes Outside. Drive Drive

Computer Code

Project.bs2

Bridge Demo

Bridge Demo.AVI

Parallel Parking Demo

Parallel Parking.AVI

Cost Estimate

<u>PART</u>	QUANTITY	<u>PRICE</u>	TOTAL
BS2 and Board of Education Kit	1	\$115.00	\$115.00
High Torque Servomotors	4	\$17.50	\$70.00
DC Motors	4	\$7.50	\$30.00
Motor Controllers	2	\$23.00	\$46.00
9V Batteries	4	\$2.50	\$10.00
AA Batteries	4	\$1.00	\$4.00
IR Sensors	4	\$17.00	\$68.00
Vehicle Chassis	N/A	N/A	\$15.00
Miscellaneous	N/A	N/A	\$20.00
TOTAL			\$378.00+

Future Improvements

- Place the button outside for better prototype user interface
- Replace current sensors with better sensors
- Eliminate the bread board and solder all connections
- Make it a remote control vehicle

Conclusion

- Servos were able to turn 90-180 degrees and back to its initial position.
- IR sensors detected if enough space was available to park car and to detect if the road narrows
- Defective motor controllers prevented the DC motors to drive the vehicle

Special Thanks and Acknowledgement

- ME 3484, <u>Mechatronics 1</u>: Faculty, Staff, and Students
- www.pololu.com for technical support
- www.acroname.com for IR sensor schematic
- www.ebaumsworld.com for video clip
- Alessandro Betti, Technician