Multi-Vehicles Formation Control Exploring a Scalar Field

Polytechnic University

Department of Mechanical, Aerospace, and Manufacturing Engineering Polytechnic University ,6 Metrotech, Brooklyn, NY 11201

Mechatronics

Professor Vikram Kapila
Group # 9

Francesca Fiorilli <francescafiorilli2@gmail.com>
Saran Kakarlapudi <saran.astronaut@gmail.com>
Danny Tan <dnnytan3@yahoo.com>

Overview

- Objective
- > Specifications
- Functionality and Algorithm
- > Hardware
- Circuit Diagram
- Photos of Product
- > PBasic Code
- Prototype Cost Analysis
- Product Limitations
- Conclusion and Improvements
- > Acknowledgements

Objective

- Exploring a Scalar Field using Multiple Mobile Agents both In and Out of Formation
 - Light
 - 3 Mobile Agents
 - Equilateral Triangle Formation

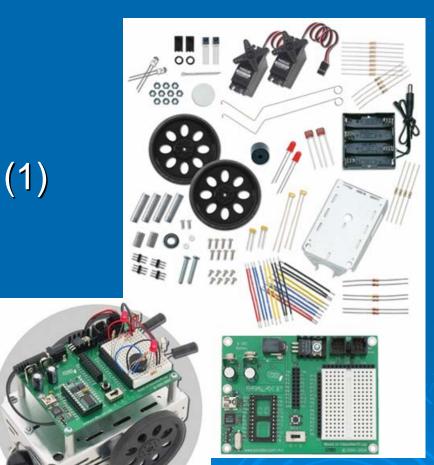
Specifications (aimed at)

- Controlled by Basic Stamp 2 microcontroller (succeeded)
- Safety features
 - Instantaneous shutdown safety switch (did not use)
 - Hard/Software features to prevent damage to the BS2 and other components (partially used)
- User Interface/Control (partially used)
 - On/Off RF controller
- Analog Sensor (succeeded)
 - Photo resistor
- Digital Sensor (succeeded)
 - RF transceiver
- Actuators (succeeded)
 - Full rotation servo motors (6)

Multi-Vehicle Formation Control

- System of controls for multi-vehicles driven in formation
- Each capable of exploring a scalar field
 - Light Intensity field (our choice)
- Basic Stamp powered computing
- > Use RF transceivers to communicate
- Battery powered system
 - 9V batteries

Functionality and Algorithm


- > CASE 1: Stand Alone Operation
 - Master is Manually Driven
 - Followers Receive command from Master
 - Maintenance of Formation
 - Triggering Signal for Breaking of Formation
 - Vehicle stops at a Safe Distance from Light Source
 - If Job finished, then it communicates with the other vehicles and if necessary repeats the above algorithm

Functionality and Algorithm 2

- CASE 2: Formation Operation
 - When Triggered, Master senses the Scalar Field (Light Intensity) and comes up with the Trajectory
 - Master Guides the Followers through RF transceivers
 - Stoppage at Safe Distance from Light Source
 - Once Job is finished, the above algorithm is repeated

Hardware

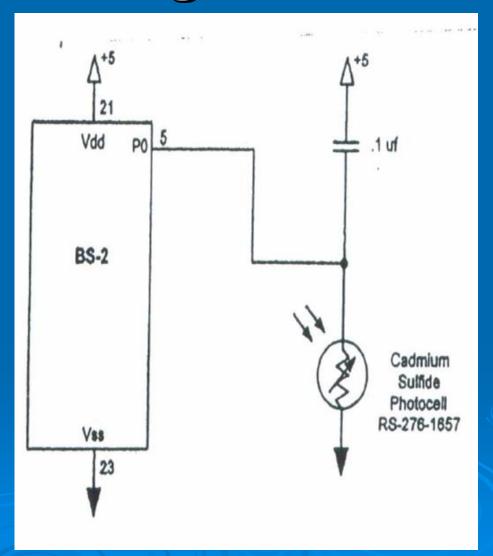
- Boe-Bot Robot Kit
 - Basic Stamp 2 (1)
 - Board of Education (1)
 - Robot chassis (1)
 - Servos (2)
 - Resistors (2, 1, 1)

Hardware 2

- > 912MHz RF transceiver (1)
 - 800 ft range
 - 9600 baud serial
 - 16-bit CRC Error Checking
 - FIFO Buffer
 - +3V to +5V Operation
 - Built-In Antenna
- Photoresistor (1)

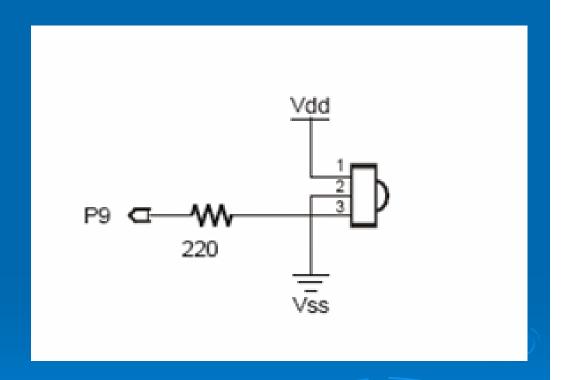
Hardware 3

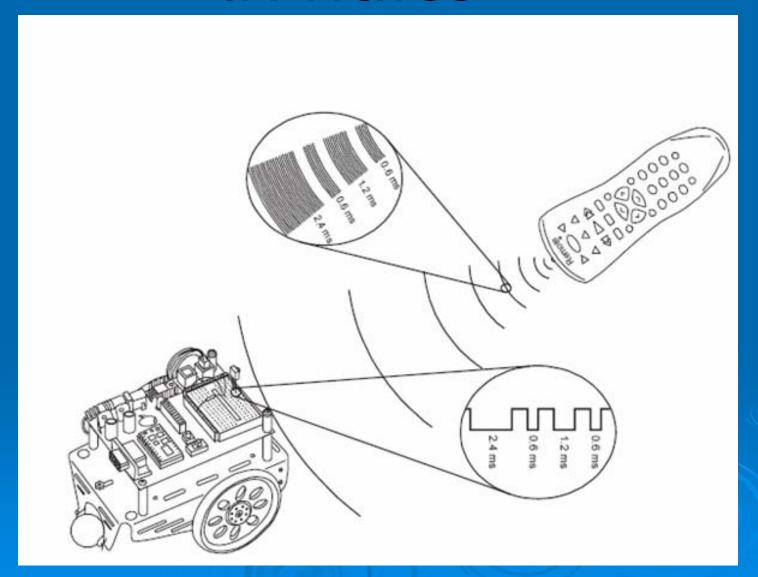
IR Sensor (Used only on the Master)


IR Remote

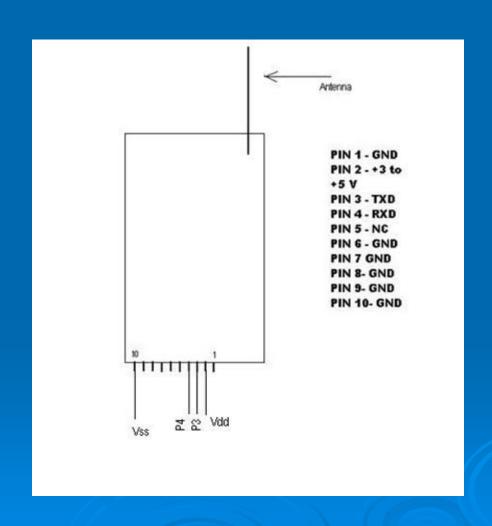
Circuit Diagram

The Picture beside is a Simple Circuit Diagram for the Usage of RC time command.


This is Used indirectly to obtain determine the Relative Intensity of Light

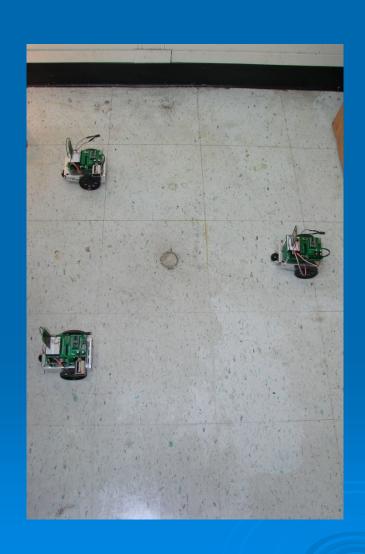

Circuit Diagram 2

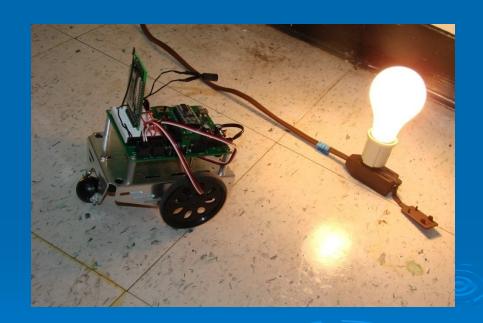
Circuit for the IR Receiver


Reading at PIN 9 depends on the key which is pressed on the IR Remote (our TV remote)

IR Waves

RF Transceiver




Photos of Product

Photos of the Product 2

PBasic Code

Prototype Cost Analysis

Parts Name	Unit Cost		Quantity	Sum Total	
Boe-Bot Robot Kit (Servos, Microcontroller, sensors included)	\$	159.95	3	\$	479.85
912MHz RF Transceivers	\$	49.95	3	\$	149.85
3 Function Universal Remote	\$	10.00	1	\$	10.00
Miscellaneous (shipping, taxes, etc.)				\$	100.00
			Total Prototype Cost:	\$	739.70

- Prototype Unit Cost = \$209.90
- Mass Production Unit Cost = \$146.25 -- \$120.22

Applications

- Semi Autonomous Fire Fighting System
- Semi Autonomous Radiation and/or Gas leak detection system
- Remote mapping of any Scalar Field

Product Limitations

- > Open Loop Control
 - Velocity of the vehicles is not monitored, trouble with variable terrain
 - No distance measurement between the vehicles, chance of formation degradation
 - Once disturbed, the initial formation cannot be reformed
- > Unable to Avoid Obstacle
 - Lack of obstacle avoidance algorithm
 - Greatly increase complexity to avoid obstacles and keep formation

Conclusion and Improvements

- > Conclusions
 - Coarsely Stable
 - System is Delicate
 - Sensitive to Terrain

Conclusion and Improvements

- > Improvements
 - Closed Loop System for Velocity and Distance
 - Active search to relocate and reform in group formation
 - Add other sensors to increase application use
 - Multiple formation selections

Acknowledgements

- Mechatronics Lab: For lending extra Boe -Bots for use
- Groups that helped with tools and materials
 - Group 3: Vito Guardi & Joseph Ferrari
 - Providing extra Basic Stamps 2
- Graphics: Parallax Incorporated (http://www.parallax.com/)

Questions?