

Mechatronics Final Project Report
Prof. Kapila

Flipper the Persistent Vehicle
(Self-Uprighting Robot)

Christopher Clinton
Michael Litvinov

Ildi Telegrafi

5.19.08

Abstract

In this paper we present a practical approach to dealing with unexpected

occurrences in vehicles and robots. Often times a vehicle or robot may turn over on its

side and will no longer be able to perform its task without human aid. Through the use of

the Basic Stamp 2 a robot was created that can autonomously detect when it is on its side

and turn back over. This way the robot can continue with its main function (which in this

case is to stay on its original course). This concept relies on the use of servos,

accelerometer and compass.

Introduction

Today, many robotic vehicles are used for various tasks. However, the design for

these vehicles focuses mainly on what is needed to complete the objective. Unfortunately,

this often disregards the randomness that comes with human interaction and the natural

environment. NASA’s Mars Rover was designed to traverse the rugged terrain on Mars.

However, if something unexpected occurred and the vehicle turned over it would be

rendered ineffective. To resume its mission, the vehicle must turn itself upright. This can

be accomplished by activating a set of motors whose purpose is to rotate an arm about an

axis parallel to the ground and thus push against it causing the robot to turn upright. This

arm applies a force against the ground that causes the robot to move out of its current

equilibrium point. Then it uses its own weight to level itself and enter the proper

equilibrium position where both sets of wheels make contact with the ground. With all

wheels touching the ground the vehicle can continue on its course. In this way the vehicle

will be able to detect, autonomously, that its orientation is incorrect and remedy the

situation.

Theory and Design

• Schematic of key components

• Hull

The hull of the Flipper (name

that was given to our robot) was built

out of plates of acrylic (plexiglas),

which was cut using Dremel1 tool and

glued together with Gorilla Glue in

places where strong adhesion is

desired, and with Glue Gun2 where

non-permanent hold is needed.

• Sensors

Flipper uses two digital sensors:

- Memsic Dual-Axis Accelerometer and

- Hitachi HM55B Compass.

The purpose of accelerometer is to sense wheth

roughly 80° tilt is considered critical. Although Memsic

X axis was needed for the purpose of this project.

Compass is used to give Flipper a purpose – imi

given to a robot.3 When the robot is turned on the value

used as a reference heading which our robot will follow

Parallax sample code was used to operate the compass

program was hand typed. Standard heading values of 0

provided by the sensor.

1 Dremel is the brand name of a versatile rotary tool that can be used
2 Glue Gun uses a heating element to melt and extrude plastic, which
providing relatively strong adhesion.
3 The idea of this project is to demonstrate that a robot can continue p
over.
Flipper’s Hull
er or not the robot is tilted. A

can measure X and Y tilts, only

tation of a particular task that is

 that’s given by the compass is

 even if it’s turned off course.

and only here – the rest of the

 to 359 are used as the signal

 for light cutting and grinding jobs.
 cools down in a matter of seconds

erforming a task even if it’s flipped

• Actuators

There are 4 servo motors used in the robot. 1 is the Continuous Rotation servo

that came with our robotics kit and its purpose is to provide forward drive to the rear

wheels via a differential gear. The other 3 motors are Parallax Pico servos which are

smaller but powerful enough to accomplish the tasks we’ve given them.

Two of the servos were modified to

provide continuous rotation to the gear sets

that drive the doors4. The last, unmodified

standard Pico servo is used for steering the

robot. Rack and pinion transmission from a

Lego set is used here.

In order to interface the Parallax servo

with a Lego gear, the gear’s insides were

drilled out to provide a firm fit onto the

servo’s axel.

• Featured Mechanism

This is the main part of the project and has unde

original concept. The idea was to make a custom part that w

to flip the robot. This however turned out to be an impos

poly is not w

part was not

around was

large gear th

which, when

door out wit

robot when

machined o

4 Doors is the term that will be used throughout the report to denote the
uprighting the robot.
Steering Mechanism
rgone a few changes from its

ould slide down and then turn

sibility as rapid prototyping at

hat it’s hyped to be. Custom

 an option and a simpler work-

thought up. Latter involves a

at is attached to a lever system

 the gear is rotated, pushes the

h enough force to tip over the

it’s on a side. The levers were

ut of aluminum and bolted

 side panels that perform the task of

together to provide a flexible joint. The large gear i

a Pico servo. The gear ratio creates a lot of torque

which is translated into quasi-linear motion.

 The doors are hinged to sides of the hull

and are si

s driven by a smaller gear attached to

ze-fitted to provide smooth operation

e

f the door mechanisms is the

 Speaker

 features a piezo speaker that is entirely unnecessary but was a fun addition

 Opening and closing range of doors with

and without load (where load is the weight of th

robot) vary drastically – this is attributed to the

fact that the servos have been modified and have

no way of knowing their current position

(unmodified servos could have been used, but

they needed to have continuous rotation for the original design, which did not work out).

This was remedied by tweaking the code to “flip out” more than “flip in”. Also, 4 buttons

were added to manually adjust the door position if needed.

 Another obstacle associated with normal operation o

fact that all servos “twitch” when the robot is turned on. This is due to the fact that the

servos are directly connected to Vdd, and understand it as a first (long) pulse. The servo

rotates just a little and then waits for normal pulses associated with Pulse Width

Modulation required to drive the servos. However small the twitch is, it was a nuisance

when testing and debugging the robot. A fix was to make the servos rotate just a bit in the

direction opposite to the “twitch” upon initialization. Another possible (perhaps better)

fix would be to use a transistor to turn on the motors when needed. With limited space

onboard the Flipper this option was set aside but is noteworthy.

•

 Flipper

with huge potential. Currently it plays two “melodies”: one upon detecting critical tilt,

and another upon regaining the original heading. It is driven using PULSOUT command

with varying pulse durations for frequency change. Actual melodies could be

programmed providing there was sufficient enough time and lack of better things to do.

• Buttons

 There are 5 external buttons on the robot available for the user to press. One

button is the emergency shut down – once it is pressed, the program will END and the

robot will stop. It can come in handy if there is a gear stuck, or quick turn off is required

for any other reason.

 The other 4 buttons control the doors. Two are for the right door and two are for

the left door. One button on each pair opens the door and the other closes it. This is useful

for demonstration, making sure the doors are in working order, and for manual

adjustment if the door doesn’t close completely.

• Circuit

• Analysis

The main advantage of this device over others is its ability to continue its mission

even when environmental effects cause it to flip over. When other devices are turned over

on their sides they are rendered inoperable and can no longer complete their task. This

device can overcome some of those obstacles and continue on. Applications range from

armored trucks to extraterrestrial rovers. It is truly surprising that the idea has not been

implemented.

 A disadvantage of this device is its inability to physically turn itself upright when

it is on its top surface. This is due to the fact that it has no overturning mechanism on its

roof. Adding one would require more space, parts, and labor and was deemed omissible

since two sides are enough to demonstrate the concept.

 The cost of the device is approximately $400. This includes 4 motors, plexiglas,

electronic components, accelerometer, compass, battery connector, bolts, glue, and

miscellaneous tools.

 Mass production cost may vary based on field of application and complexity of

the design. To add a flipping capability to one side of a robot or a vehicle, the

manufacturer would need an electromotor, a hinged plate (in armored truck’s case), a

gear box or possibly an oil pressure cylinder to drive the door. In some cases the

mechanism could be activated by the driver of the vehicle and no orientation detection

would be needed in that case.

• Code

' {$STAMP BS2}

' {$PBASIC 2.5}

' *************** FLIPPER THE PERSISTENT VEHICLE (aka OVERTURNER) *******************

' **** Compass Pins/Constants/Variables from Parallax ***

DinDout PIN 5 ' P5 transceives to/from Din/Dout

Clk PIN 3 ' P3 sends pulses to HM55B's Clk

En PIN 4 ' P4 controls HM55B's /EN(ABLE)

Reset CON %0000 ' Reset command for HM55B

Measure CON %1000 ' Start measurement command

Report CON %1100 ' Get status/axis values command

Ready CON %1100 ' 11 -> Done, 00 -> no errors

NegMask CON %1111100000000000 ' For 11-bit negative to 16-bits

xcom VAR Word ' x-axis data

ycom VAR Word ' y-axis data

status VAR Nib ' Status flags

angle VAR Word ' Store angle measurement

'**** Accelerometer Pins/vars

xTilt VAR Word ' X tilt value

'yTilt VAR Word ' Y tilt value NOT USED

xTpin PIN 0 ' X pin of accelerometer

yTpin PIN 1 ' Y pin of accelerometer

'**** Motor Pins

Steer PIN 12

Drive PIN 13

Right PIN 14

Left PIN 15

'**** Miscellaneous Variables

i VAR Word ‘ temp variable

a VAR Word ' a=angle-TargetHeading

b VAR Word ' b=angle-TargetHeading+360

TargetHeading VAR Word ' Target heading

Window VAR Word ' allowable deviation from course

Window = 20

Played VAR Bit ' for sounds

Played =1

GOSUB GoStraight ' Straighten Steering

' *** Get Current Heading

GOSUB CheckDirection ' Call compass sensor

 TargetHeading = angle ' Set this heading as Target

DEBUG DEC TargetHeading

'** auto adjust flippers to negate the "servo start up twitch"

' Flip In right

 FOR i=1 TO 1

 PULSOUT Right, 900

 PAUSE 20

 NEXT

' Flip Out left

 FOR i=1 TO 1

 PULSOUT Left, 1000

 PAUSE 20

 NEXT

'******* MAIN OPERATION LOOP ***

DO

 IF IN2 = 1 THEN ' emergency shut down button

 END

 ENDIF

'***** door adjustment buttons

IF IN6 = 1 THEN

 ' RIGHT Flip Out

 FOR i=1 TO 1

 PULSOUT Right, 100

 PAUSE 18

 NEXT

ELSEIF IN7 = 1 THEN

 ' RIGHT Flip In

 FOR i=1 TO 1

 PULSOUT Right, 1500

 PAUSE 20

 NEXT

ELSEIF IN8 = 1 THEN

 ' LEFT Flip Out

 FOR i=1 TO 1

 PULSOUT Left, 100

 PAUSE 18

 NEXT

ELSEIF IN9 = 1 THEN

 ' LEFT Flip In

 FOR i=1 TO 1

 PULSOUT Left, 1500

 PAUSE 20

 NEXT

 ENDIF

 ' *** end buttons

PULSIN xTpin,1,xTilt ' get x tilt

IF xTilt > 3000 THEN ' Robot is on its Right side

 GOSUB FlipRight

ELSEIF xTilt < 2000 THEN ' Robot is on its Left side

 GOSUB FlipLeft

ENDIF

' ********* TURNING ****************

GOSUB CheckDirection ' Where am I going?

a= angle-TargetHeading ' temporary vars for evaluating absolute values (see trueAbs)

b= angle-TargetHeading+360

GOSUB trueAbs ' evaluates absolute value (with negatives)

IF a < Window THEN ' Heading is within allowable window of deviation

 IF Played = 0 THEN

 GOSUB OnCourseSound

 Played = 1

 ENDIF

ELSEIF a < b THEN ' crazy code

 Played = 0

 IF(angle<TargetHeading) THEN

 GOSUB TurnRight

 ELSE

 GOSUB TurnLeft

 ENDIF

 ELSEIF(angle<TargetHeading) THEN

 GOSUB TurnLeft

ELSE

 Played = 0

 GOSUB TurnRight

ENDIF

' ********* end of turning ***************

GOSUB MoveForward ' move on!

LOOP

' *** main operation loop ends here ***************

' **

' ************ NEXT PAGE FOR SUBROUTINES **

' *************** Subroutines ************************************

trueAbs:

 IF a>32767 THEN

 a=65535-a

 ENDIF

 RETURN

GoStraight: ' position front wheels facing forward

 FOR i=1 TO 50

 PULSOUT Steer, 750

 PAUSE 10

 NEXT

RETURN

' ***************************

TurnRight: ' make a right turn

 FOR i = 1 TO 20 ' steer right

 PULSOUT Steer, 1200

 PAUSE 20

 NEXT

 FOR i = 1 TO 30 ' drive a bit forward

 PULSOUT Drive, 500

 PAUSE 20

 NEXT

 GOSUB GoStraight

RETURN

' ***************************

TurnLeft: ' make a left turn

 FOR i = 1 TO 20 ' steer left

 PULSOUT Steer, 400

 PAUSE 20

 NEXT

 FOR i = 1 TO 30 ' drive a bit forward

 PULSOUT Drive, 500

 PAUSE 20

 NEXT

 GOSUB GoStraight

RETURN

' ***************************

MoveForward:

 FOR i = 1 TO 10

 PULSOUT Drive, 500

 PAUSE 5

 NEXT

RETURN

' ***************************

FlipRight:

' Play sound

 GOSUB FlipSound

' Flip Out

 FOR i=1 TO 35

 PULSOUT Right, 100

 PAUSE 18

 NEXT

 PAUSE 1000

' Flip In

 FOR i=1 TO 20

 PULSOUT Right, 1500

 PAUSE 25

 NEXT

RETURN

' ***************************

FlipLeft:

' Play sound

 GOSUB FlipSound

' Flip Out

 FOR i=1 TO 25

 PULSOUT Left, 1500

 PAUSE 20

 NEXT

 PAUSE 1000

' Flip In

 FOR i=1 TO 26

 PULSOUT Left, 100

 PAUSE 20

 NEXT

RETURN

' ***************************

' **************** SOUNDS **************

' Sound weee wooo

FlipSound:

 FOR i=500 TO 100

 PULSOUT 10, i

 NEXT

 PAUSE 100

 FOR i=100 TO 500

 PULSOUT 10, i

 NEXT

RETURN

' pe lee beep beep

OnCourseSound:

FOR i=1 TO 70

 PULSOUT 10, 800

 NEXT

FOR i=1 TO 200

 PULSOUT 10, 200

 NEXT

FOR i=1 TO 40

 PULSOUT 10, 50

 NEXT

 PAUSE 100

 FOR i=1 TO 40

 PULSOUT 10, 50

 NEXT

RETURN

'*** Compass (code by Parallax)

CheckDirection: ' Compass module subroutine

 HIGH En: LOW En ' Send reset command to HM55B

 SHIFTOUT DinDout,clk,MSBFIRST,[Reset\4]

 HIGH En: LOW En ' HM55B start measurement command

 SHIFTOUT DinDout,clk,MSBFIRST,[Measure\4]

 status = 0 ' Clear previous status flags

 DO ' Status flag checking loop

 HIGH En: LOW En ' Measurement status command

 SHIFTOUT DinDout,clk,MSBFIRST,[Report\4]

 SHIFTIN DinDout,clk,MSBPOST,[Status\4] ' Get Status

 LOOP UNTIL status = Ready ' Exit loop when status is ready

 SHIFTIN DinDout,clk,MSBPOST,[xcom\11,ycom\11] ' Get x & y axis values

 HIGH En ' Disable module

 IF (ycom.BIT10 = 1) THEN ycom = ycom | NegMask ' Store 11-bits as signed word

 IF (xcom.BIT10 = 1) THEN xcom = xcom | NegMask ' Repeat for other axis

 angle = xcom ATN -ycom ' Convert x and y to brads

 angle = angle */ 360 ' Convert brads to degrees

 RETURN ' RETURNS angle

• Bill of Materials

Basic Stamp & sensors $300

Acrylic plates $30

Custom machined parts $30

Lego gears and wheels $20

Extra servos $20

Glue $5

Bolts $5

Battery Connector $1

Joy of putting it all together Priceless

