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This paper describes  three extremdy simple electronic  circuits in 
which  chaotic phenomena have been observed.  The simplicity of 
the  circuits  allows one to 

i) build them easily, 
ii) confirm the observed phenomena by digital computer sim- 

iii) rigorously prove the circuit is indeed chaotic. 
ulation, and in some cases 

A consequence of i) is that the interested reader can build, and 
then see and even listen to  chaos. 

It is to be emphasized that these  circuits  are not analog com- 
puters.  They  are real physical systems. 

I. INTRODUC~ION 

Until recently, very few  electrical  engineers  questioned 
the  validity  of  the  following statements: 

oscillation = periodic 

noise = nondeterministic 

Now it is undeniable  that both  of  them are  false.  The pur- 
pose of  this  paper is to provide  the reader with  not  only  the 
circumstantial  evidence  which has lead to questions  about 
the  validity  of these  statements but also a  rigorous  proof 
for it. The evidence all comes from extremely  simple elec- 
tronic  circuits  which even high school  students can build. 
No delicate  and/or expensive equipment is necessary. It is 
strongly  recommended  that the interested reader build  the 
circuits, and  then see and even listen to the  phenomena. 
It  would be  a Jot of  fun. 

The circumstancial  evidence shows that 

always periodic (1.1) 

and that 
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Hands-on  experience with those  circuits tells us that 

there are low-order  deterministic (Newtonian) 
systems which are ”unpredictable” (1.3) 

in the sense that even  an extremely small  change of  the  ini- 
tial condition  eventually gives  rise to an entirely  different 
trajectory. The periodic  oscillators are “predictable” in that 
every trajectory  eventually converges to the same periodic 
orbit irrespective  of the  initial  condition. Experience  also 
shows that 

those  systems in (1.3) can produce “deterministic noise.” 

(1.4) 

So far, the  word “chaos” has been  intentionally  avoided 
because there has been no unanimously accepted defini- 
tion of it. If  one  definition were used, there  would be  some 
inconsistency, while  if anothe’r were used, there would be 
some inconvenience,  and so forth.  Therefore by a ”cha- 
otic”  circuit  in  this paper is meant, more  or less ambigu- 
ously, a circuit  which admits  a  nonperiodic  oscillation. 

Given  the  extremely  short period of time alloted  for  the 
preparation  of  this paper, it  will have to be restricted to those 
circuits  studied  by the author  and his  colleagues,  even 
though had it been possible, chaotic  circuits  studied by 
other  people would have been  included. 

There will be three  circuits  described: 

I) double scroll 
II) folded  torus 

Ill) driven R-L-Diode. 

The first two are  autonomous while  the  third one is non- 
autonomous.  The following format will be  used to describe 
each circuit: 

A) circuitry 
B) experimental observations 
C) confirmation 
D) analysis 
E) bifurcations. 

Throughout the paper, the reader’s attention is directed 
to the  simplicity  of these circuits, which allows  one to 

i) build  them easily 
ii) confirm observed  phenomena  by  computer  simu- 

iii) rigorously  prove the  circuit is indeed  chaotic. 
lation easily  and, in some  cases 
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It should be  emphasized that  the  circuits discussed in 
this paper  are not analog  computers. In the  circuits dis- 
cussed  below, the voltage and current  of each circuit ele- 
ment  play  critical roles in the dynamics, while  in an analog 
computer, only the  node voltages of  integrators are involved 
in the dynamics. 

II. THE DOUBLE SCROLL 

The circuit  to be  described in this  section is one of  the 
very few  physical systems which  fullfil i),  ii), and iii) of  the 
last  section. 

A. Circuitry 

The circuitry is given in Fig. l(a).  It contains onlyonenon- 
linear  element:  a  piecewise-linear  resistor with  only two 
breakpoints  given in Fig. l(b). This circuit can  be  easily  real- 
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(b) 
Fig. 1. A simple autonomous circuit with a chaotic  attrac- 
tor. (a) The circuitry. (b) v-i characteristic of the nonlinear 
resistor. 

ized, for example, by  the  circuit  of Fig.  2(a), where the sub- 
circuit  Nenclosed  bythe  broken  line realizesthepiecewise- 
linear resistor. Fig.  2(b)  shows the measured v-i  character- 
istic of N. 

6. Experimental Observations 

Fig.  3(a), (b), and (c)  shows a  trajectoryprojected  onto  the 
(iL, vcl)-plane, ( ir ,  vc2)-plane, and (vc,, vCJ-plane,  respectively, 
at the  following parameter  values: 

C, = 0.0053 pF C, = 0.047 pF L = 6.8 mH 

R = 1.21 kfl RB = 56 kQ R1 = 1 kfl 
(2.1) 

R, = 3.3 kfl R, = 88 kfl 

R4 = 39 kfl Vcc = 29 V. 

(b) 

Fig. 2. A realization of the circuit in Fig.  1. (a) Circuitry. Q,, 
Q2 = 2SC1815, D,, D2 = 1S1588. (b) Measured v-i charac- 
teristic of N. Horizontal scale: 5 V/div. Vertical scale: 1 mA/ 
div. 

Of course, they are the  nominalvalues;  the exact  values 
could  fall  within 10 percent of these due to component  tol- 
erances.  The photographs  indicate  that  the  sotution tra- 
jectory is nonperiodic. In fact, the  time waveforms of vcl(t), 
vc,(t), and iL(f) look  like noise (Fig.  +a), (b), and (c), respec- 
tively). 

C. Confirmation 

The  dynamics of the  circuit  in Fig. 1 is governed  by 

(2.2) 

where g( e )  represents the  piecewise-linear  characteristic  of 
the resistor  given  by Fig. l(b). 

The experimental  observations are confirmed  by  solving 
(2.2) with  the  following rescaled  parameter  values:' 

1/c, = 9  IlC, = 1 1 /L  = 7 G = 0.7, 

m, = -0.5 = -0.8 B, = 1. (2.3) 

'Of course, one ca,n make the confirmation via the circuit of Fig. 
2 by using an accurate model of the transistors,  e.g., SPICE 2 [2]. 
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(C) 

Fig. 3. Observed attractor.  Voltage: 2 Vldiv. Current: 2 mA/div.  (a) qhere is  an unstable direction as well as a  stable direction. 
Projection onto  the ( iL,  vc,)-plane. (b) Projection onto  the ( j r ,  vc2)- Therefore, one cannot s e e  a  saddle-type periodic orbit  on theoscil- 
plane.  (c)  Projection onto  the (vc,,  v&plane. loscope. 
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Fig. 5. Confirmation. (a) Projection  onto  the (iL, v,,)-plane. 
(b) Projection  onto  the (iL, vcJ-plane. (c) Projection  onto  the 
(vel, vc2)-plane. 

8.2mH 

-15V t 15V 

Fig. 6. Another  realization of the  circuit in Fig. 1. 

who wants to  build  the circuit, Fig. 6 is  recommended, 
because, first, the  symmetryof  the  v-icharacteristic can be 
realized easilywithout  worrying  about  the  pair (Q1, Q2), and, 
second, the  battery  voltage is less than  that of Fig. 2. 

Fig. 7 gives the  power  spectrum of vc,(t), which indicates 
a  broad-band  continuous  power spectrum.  Because  most 
of  the  frequency  components are within  the audible fre- 
quencies, one can  listen to  the sound, which is mysterious 
and amusing. It is strongly  recommended  that the reader 
listen to it. It is a lot of fun.3 

3As there  have  been  many requests for the real circuit, we have 
produced many circuits illustrated in Fig. 6. The interested  reader 
can write to  the  author. 

Fig. 7. Power spectrum of vcl(t). 

Let  us give several circuit-theoretic  explanations  of  the 
chaotic  behavior of this circuit. First note  that the parallel 
connection  (tank  circuit) of C, and L constitutes  one basic 
oscillatory mechanism in  the (vcz, i,)-pIane, whereas the 
conductance G provides the interactions  between the 
(C, Lhscillatory  component and  the active resistor g(-) 
together with C,. This  active resistor is responsible  for the 
circuit’s  chaotic  behavior. If  this  resistor  were  locallypas- 
sive, it is well  known  that  the  circuit  would  be  quite tame: 
all solutions would approach  a  globally  asymptotically sta- 
ble  equilibrium. Since g( . )  is  always locally active, i.e., 
vdt) idt) e 0 (except  at the  origin) it keeps supplying  power 
to the  external  circuit. The attracting  nature  of  the  chaotic 
trajectories comes from  the power  dissipation in the pas- 
sive element C, thereby  restraining its growth. The power 
balance,  however, is rather delicate, and varies continu- 
ously with time,  never repeating itself periodically. 

D. Analysis 

Because of the  simplicity of (2.2), one can perform  a rig- 
orous analysis. In order to simplify  the analysis, we  trans- 
form (2.2) into 

p x - y + z  

I $ = -By 

b x + a - b ,  x r l  

1x1 s 1 (2.5) 

b x - a + b ,   x s  -1 

vi a 

X = v&BP y = vciBP z = iL/(BpG) 

7 = tUC, a = mJC + 1 b = mo/G + 1 

a = tic, 0 = C,/(LG2). (2.6) 

Here, we  have  abused our  notation  for time: it should 
have  been “7” instead of “t.” There will be no confusion, 
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however. Note  that h ( x )  includes both x and g(x ) .  We begin 
with  the  following observations: 

i) Equation (2.4) is symmetric with respect to the  origin, 
i.e., the  vector field is invariant  under  the  transformation 

(x ,   y ,  z) + ( - x ,   - y ,  - a .  
ii) Consider the  equilibria 

h ( x )  = 0 

{ y = O  

x + z = o .  

Itfollowsfromtheformofh(.)that(2.4)hasauniqueequi- 
librium in each of  the  following  three subsets of R3: 

Dl = { ( X ,  y ,  Z ) : X  2 I }  

Do = { ( X ,   y ,   z ) : ( x J  I 1) 

D-1 = { ( X ,  y ,  Z ) : X  I -1) 

provided  that a, b # -1. The equilibria are explicitly  given 
by 

P+ = ( k ,  0, - k )  E Dl 

0 = (0, 0,  0) E Do 

P- = ( - k ,  0, k )  E D-1 

where k = (b - a)& + 1). 
iii) In each of Dl, Do, and D-l, (2.4) is linear. In fact, letting 

X = (X ,   y ,  Z )  k = ( k ,  0, - k )  

and introducing  the 3 x 3 real matrix 

-ac a 

Ab,  8, c) = [ i. -1 ‘1 
whereA  depends on a,  8, and  a parameter c, which is equal 
toainDo,andbinD1andD-l.Wecanrecast(2.4)asfollows: 

-8 0 

Ab, 8, b) (X - k) ,  X E Dl e = {  dt Ab, 8, a h ,  X E D O .  

Ab,  8, b) (X + 4 ,  X E D-1 

The  set of parameter  values (a, 8, a, b) corresponding to (2.3) 
is  given (via 2.6)) by 

(a, 8, a, b) = (9,143, -+, 3). 
Then the matrix 

AI = A@, 14, $1 
associated with  the regions Dl and D-l has a real  eigenvalue‘ 

= -3.94 

and  a  pair of  complexconjugate eigenvalues 

C1 f jijl = 0.19 f j3.05. 

Similarly, the  matrix 

A0 = A(9, 14, -;) 

’The  tilde is used here to distinguish the eigenvalues from the 
“normalized” eigenvalues which will  be defined later. 

associated with  the region Do has a real eigenvalue 

7 0  = 2.22 

and  a  pair of  complexconjugate eigenvalues 

c0 f jijo = -0.97 f 12.71. 

Let € ‘ ( P i )  be the eigenspace corresponding to the real 
eigenvalue T1 at P i  and  let €‘(Pi)  be the eigenspace cor- 
responding to the  complex eigenvalues & f jijl at P i .  Sim- 
ilarly, let € T O )  and €70) be the eigenspaces corresponding 
to To and C0 f jk0, respectively. Then the eigenspaces  are 
given  explicitly by the  following equations: 

€‘(Pi ) :  
x T k  - _  - Y - Z f k  -- 

4: + 41 + 8 41 -8 

€‘(Pi): (7; + + 8) ( X  T k )  + a j . 1 ~  + a(z f k )  = O 

E ‘(0): 
X = L = f  

4; + 4 0  + B 4 0  -8 
EC(0): (7; + 7 0  + 8 ) x  + a 4 0 y  + OLZ =o. 

Relative positions  of  the eigenspaces and  related sets are 
described in Fig. 8, where 

L~ = EC(O)  n u1 c = u o )  n u, 
L~ = E ~ ( P + )  n u1 D = E‘(P+) n u1 
L~ = { X  E u1 : s(x)//ul) E = L~ n L~ 

A = L ~ ~ L ,  F = {x E L 2 : f ( x ) / / L 2 } .  

B = L~ n L~ 

Here €(x)//L2 means that the vector field ,$(x) defined by (2.4) 
is in parallel with Lz. 

Since the dynamics is piecewiselinear,  this picture (Fig. 
8) already illustrates a great  deal of  important  information 
as described in the  following subsection. 

7) Geometric  Structure:  Let  us describe the structure of 
the  attractor. In this subsection,  we will use the  following 
notation  for  the eigenspaces: 

E S ( P * )  = € ‘ ( P i )  E U ( P  *) = € ‘ ( P i )  

ES(0) = EC(0) EU(0) = €YO). 

Fig. 8. Eigenspaces  of the equilibria and related sets. 
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Let 9' be  the  flow generated  by (2.4) and pick an initial 
condition x, E E"(P+)  in a neighborhood  of P+. Then, for 
t > 0, the  flow cp'(x,,) starts wandering away from Pt on 
EU(Pt). After winding  round P+ several times in  a  counter- 
clockwise  direction, it hits the  plane U1 at  some time, say 
tl:xl = p"(xo).  The trajectory up  to tl is a spiral because (2.4) 
is linear in Dl and E"(Pt) is invariant. Clearly, x, E Lo. Note 
that  the line L2 is  a  straight line parallel to the z-axis  because 
x is  independent  of z. Observe  that L2 separates the  plane 
U, into two regions, one (to  which A belongs)  where x < 
0 and  another  where x > 0. Since cp'(xo) hits  the  plane U1 
downward (recall that the  motion is counterclockwise) at 
t = t,, one sees that x1 belongs to the  line segment m, where 
G is a  point  on Lo to  the  left  of and  sufficiently far from A, 
i.e., x c 0 at  x,. The "fate"  of cp'(xl) depends  crucially on 
which  part  of x, lies (see  Fig. 9). 

Case 1: x, = A (red): 
Since the dynamics is linear in Do, one can check ana- 

lytically that &) never hits U-, directly  for  the parameter 
values (2.3), i.e., the real part C0 of the complex  conjugate 
eigenvalues is negative  and small compared to  the imagi- 
nary part Go. SinceA E€'(O) and  since E S ( O )  is  invariant, q'(xl) 
approaches the  origin asymptotically as t + 00 (see  Fig. 9). 
The trajectory is a spiral with an infinite number of rotations 
for (2.4) is linear in Do and ES(0) is  invariant. 

Case 2: x, E Interior (blue): 
In this case &x,) has two components in  the sense that 

its projection  onto ES(0) approaches the  origin asymptoti- 
cally and i ts projection o n t o K  c E"(0) wanders away from 
the  origin. This  means that cp'(xl) moves up along  a  spiral 
with  the central axis and  then  eventually hits U1 again 
from below: x2 = @(xl). The number of rotations  of &x,) 

around can  get arbitrarily large without  bounds  if xl is 
very  close to A. These  processes naturally  give rise to  the 
map 

4: AB + u, 
defined by 

*(x,) = x2. 

The  image *(AB) is a  spiral with  the center at C which is 
tangent to Lo at B .  After hitting U,, the  trajectory tp'(x2)  has 
two components in the sense described above: one  which 
stays in EU(P+)  and moves  away from P+ in a  spiral  manner 
and  another in ES(Pt) which approaches P? asymptotically. 
Erefore,cp'(x,)ascends in aspiral  path  with  thecentral ax is  
DP+ and  flattens itself onto E U ( P + )  from  below (see  Fig. 9). 

cp'(xl)  has two components in the same  sense  as above. 
One component stays in €70) and  asymptotically a p  
proaches 0 in a  spiral manner. Another  component stays 
in E U ( P t )  and moves  away from 0 on c. This  means that 
cp'(xl) descends along  a  spiral with  the central axis c, hits 
U-, at x2 = cpb(xl), and eventually  enters  region D-,. The 
closer xl is to  point A, the  larger  the  number  of  rotations 
of cp'(x,) around e. After  entering  into D-,, the  flow $(x2) 
consists of two components:  one which is in E U ( P - )  and 
moves  away from P-, and  another which stays in E S ( P - )  and 
asymptotically approaches P-. Therefore,  $(x2)  descends 
spirally with  the central axis D - P -  and  eventually  flattens 
itself onto E Y P - )  from above  (see  Fig. 9). 

Based upon  the above observations, we  can understand 
the  geometric  structure of  the attractor. Fig. 10 describes 
the  structure  after several simplifications.  Note  that two 

Case 3: x1 E Interior GA (green): 

- 

F& 9. Typical trajectories. 
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Fig. 10. A geometric model of the double scroll. 
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sheet-like objects are curled up together into spiral  forms: 
these form  the  "double scroll." 

Let  us look at a cross section of  the attractor. Fig. 11 gives 
the cross section at  vc, = 0, where  the  double-scroll  struc- 
ture is clearly seen. 

Fig. 11. Cross section of the  double  scroll at vc, = 0. 

Finally, the Lyapunov  exponents [4] turn  out  to be 

s 0.23 ~ ( 2  S= 0 p3 c -1.78 

so that  the Lyapunov dimension is 

dL = 2 + ( p l  + p2)/lp31 = 2.13. 

Thisisafractalbetween2and3andagreeswiththeobserved 
sheet-like structure. 
2) Homoclinicity:  One can take full advantage of  the 

piecewise-linearity of (2.4) and  prove  that it is chaotic in  the 
sense of  Shilnikov. To begin  with, recall that the  line L2 
denotes the set of  points  where  the  trajectory  of (2.4) is  tan- 
gent to U,. On the  left-hand side of LZ, a  trajectory  hits U1 
downward, while  on  the right-hand side of L2, a  trajectory 
hits U, upward. Consider  the  trajectory  starting with 0 on 
E'@), the  unstable  eigenvector. It reaches point C, which is 
the  intersection  of the unstable eigenspace of 0 with U1. If 
the  trajectory  starting from  Chits a point  on  the  line seg- 
ment at  some time, say  (Fig. 12) 

(2.7) 

Fig. 12. Homoclinic trajectory at the origin. 

1040 

where (pf is  the  flow generated by (2.4), then  the  trajectory 
would stay on €YO) and  asymptotically  approach 0, because 
EC(0) is  invariant. Such a  trajectory is called homoclinic and 
it is related to a  very  complicated  behavior of solutions to 
differential  equations. A rigorous  statement is given  by the 
following theorem of Shilnikov ([3]-[5l): 

Theorem  (Shilnikov) 
Consider 

- = fQ dx 
dr 

where f: R3 + R3 is continuous  and  piecewiselinear. Let 
the origin be an equilibrium  with a real eigenvalue y > 0 
and  a  complex  conjugate  pair a f jo (a < 0, o # 0). If 

i) (a1 < y, and 
ii) there is a  homoclinic  orbit  through  the  origin 

then  there is a horseshoe near the  homoclinic  orbit. 0 
The  horseshoe mentioned in the theorem is formed in 

the  following manner. Consider Fig. 13, where an appro- 
priate  coordinate system is chosen so that the unstable 
eigenspace corresponds to  the z-axis and  the stable eigen- 
space corresponds to  the (x ,  ykplane. One can take an 

Fig. 13. The  horseshoeembedded near the  homoclinic tra- 
jectory. 

appropriate  cylinder  and  a  narrow  strip on  the surface of 
the  cylinder such that i ts  Poincark return image is strongly 
contracted in the  horizontal  direction,  strongly  stretched 
in  the vertical  direction,  and then  bent as depicted in Fig. 
13. It should be noted  that  a  rectangle  IikeA  returns  to  the 
long  thin  object B. The horseshoe  thus  formed gives rise 
to an extremely  complicated  behavior. Namely, a horse- 
shoe has a  positivelyand  negatively  invariant  setA such that 
[41 

i) A is  a  Cantor set, 
ii) A contains  a  countable  number of  saddletype  peri- 

odic  orbits of arbitrarily  long periods, 
iii) Acontains an uncountable  number of  boundednon- 

periodic  orbits,  and 
iv) A contains  a dense orbit. 

Moreover,  a horseshoe is srructurallysrable, i.e., small per- 
turbations do not destroy O-iv). 

Therefore, if a horseshoe is embedded somewhere in the 
dynamics, the  trajectory will be extremely  complicated. In 
fact, those who have experience in this area would suspect, 
that  wherever  there is chaos, a horseshoe is embedded in 
the  vicinity  of  a  homoclinic  orbit  (or  a  heteroclinic orbit). 

3) Proof o f  Chaos: One can prove  rigorously [6], [q that 
this  circuit is chaotic in  the sense of Shilnikov. 
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Theorem 
Consider (2.4) and (2.5) and fix 

( u = 7  a = - +  b = '  7. 

Then there is a j3 E [6.5,  10.51 such that the circuit is 
chaotic in  the sense of  Shilnikov. 

Let us briefly  describe  how  one can prove this. Recall that 
what  one wants to prove is (2.7). This, however, is  extremely 
difficult,  for  one has to compute  the  return time, tl, at which 
a  trajectory hits the plane U1. In general, it is impossible to 
compute tl analytically, because the  trajectory cp"(C) 
involves sin,  cos,  and  exp,  and therefore, tl i s  defined  only 
implicitly  by  a transcendental  equation. In order to overcome 
this  difficulty,  we will make the  following change of  coor- 
dinate systems  (Fig. 14): 

a) Take a map Pl: ?13 + Fi3 such that 

*.,(P+) = 0 

P1(U,) = v, = { ( x ,  y, z ) : x  + z 

rul -I O -  

L 

= I} 

x (2.8) 

where u1 = 6,/Gl and y1 = +,/G1 and D denotes a deriva- 
tive. 

z D,-unit 

(a) (b) 

Fig. 14. Geometrical structure  and  typical  trajectories  of 
the original  piecewise-linear  system  and their images in  the 
&-unit and D,-unit  of the transformed  system.  (a) Original 
system  and typical  trajectories. (b) Do-, D,-units  and  half- 
return maps. 

b) Take a map Po: R3 + R3 such that 

*O(O) = 0 

P0(U1) = v, = { ( x ,  y, z ) : x  + z = I} 

= v,- = { ( x ,  y, z ) : x  + z = -1) 

ru0 -I O -  

X 

I 

(2.9) 

where uo = 6dGoand yo = +dGo. Wewill call the  transformed 
systems (2.8) and (2.91, the D,-unitand Do-unit, respectively. 

In order to make the transformed  differential  equation 
consistent,  one has to "match" (2.8) with (2.9) through  the 
map 

aJ = ( 0 1  I Ul) O (Pol U,) - (2.10) 

whc .e Q1(U, (resp., CoIU1) denotes  the  restriction  of P1 
(resp., q0) to U1. These  maps  can  be explicitly  given in terms 
of  the eigenvalues. 

Consider  the negative  half return map  (Fig. 14) in  the Dl- 
unit  defined by 

r d x )  = cpY'(X), x E Vl (2.11) 

where 9;' is  the  flow  in  the  &-unit  and 

T = inf { t  > o:cp;'(x) E v1}. (2.12) 

Now  the  homoclinicity  condition (2.7) can  be  expressed as 

F l  (2.13) 

where 

CT = Pl(C) A1 = *1(A) €1 = PI(€). 
Although  the  transformed  flow (p;'has a  simpler expres- 

sion (recall (2.8)) than  the  original  flow (or, the  half return 
time, T, defined by (2.12) is  still a  solution to a transcen- 
dental  equation. The following proposition, however, pro- 
vides us with  a breakthrough. 

(2.14) 

where h = (1, 0, 1). 

Formula (2.14) says that in order to obtain  the  rl-image 
of G, one does not have to compute  the  half  return  times. 
Rather, (2.14) uses T as a  parametrization of rl(m). It fol- 
lows  immediatelyfrom (2.14) that z 1 ( G )  is  ashrinkingspi- 
ral. Fig. 15 shows the Vl-plane.  The curve Q1 is  a  part  of 
r l ( G ) .  Several other  points and  curves  are  also drawn. 
They  are  unnecessary for  the  present  purpose, however. 
The reader is referred to [6]. 

LetuslookatFig.l6whichistheVl-plane,again.Consider 
the  annulus  region  bounded  by two circles Sa and Sb. The 
radius  of Sa is  the  distance of Al from  the origin,  while  the 
radius of Sb is I 1 E l I I  e-2ru1. One can prove [6], then,  that  the 
part  of x l ( m )  is trapped within  the annulus  region 
for all j3 E [6.5,  10.51. 

Proposition 2.2 [6] 

i) Cl is  a continuous  function  of B E [6.5,  10.51. 
ii) Let Cl = (xc, yc). Then yc > 0 and  there is an xF such 

that xc < xF 1 for j3 E [6.5,  10.51. 0 
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off, is exaggerated in this figure for clarity. The actual  Posi- 
tion of fl is very close to a,. 

Y /p‘ 

- 7 1  I I 
Fig. 16. The annulus region bounded by Sa and SL,. 

Finally, if 

[ and 

then  Proposition 2.2 ensures that 

Cl (8 = 6.5) is outside of Sa 

(2.15) 

Cl (8 = 10.5) is inside  of Sb 

{C1(8 E [6.5,10.51) 

is  a  simple  curve and it intersects with x,(%) somewhere 
in  the annulus  region:  homoclinicity. The final step, there- 
fore,istoprove(2.15).Inordertodothislacomputer-assisted 
proof is  performed. 

4) Computer-Assisted Proof of  (2.75): Statements in (2.15) 
can  be written as 

8 = 6.5: IIGII > IIA1II 

8 = 10.5:  IIClll < IIE111e-2ru1 

where ul is defined in (2.8), the real part  of  the  complex  con- 
jugate  eigenvalues at P* “normalized” by the  imaginary 
part.  The projections of Al, Cl, and El onto Vl can be  explic- 
itly given in terms  of the eigenvalues 

A1 = (1, p1) CI = (XC, yc) 

and 

El = (X€, YE) 

where 

* { k l ~ d u l ( u ~  - 71) + 11 + 2uo71(~1 - 71)) 

p1 = Ul + kl(4 + lY71, kl = -7Jro 

Q1 = (01 - 71)’ + 1 
XE = YI(Y~ - 01 - PJQ1 

YE = Y I [ ~  - (01 - rl)YQ1. 
The  eigenvalues, in turn, are afunction of 8. The  real  eigen- 
value Ti, i = 0, 1, is a  real  solution to  the characteristic equa- 
tion 

T ;  + (ac; + l)$ + (aci - a + 8 ) ~ ~  + a8ci = o 
where co = a,  c1 = b. A simple  calculation shows that the 
complex  conjugate  pair satisfy 

5; = -(aci + 1 + Ti)/2 

5 ;  = -(aci - 1 - ~;)’/4 - a’c;/(~; + aci). 

This  means that  given  a 8, one can compute Al, C,, and El 
by finding zeros of polynomials of degree  at most 3 and by 
performingtheoperations +, -, x,and  +./nprinciple,this 
can  be done  by hand.  However, it would be formidably tedi- 
ous.  The computer-assistedproof  given in m accuratelyesti- 
mates the  errors  incurred by 

i) finding a  zero  of  a  polynomial, 
ii) +, -, x, t 
iii) conversion of a real number to and from  the cor- 

responding  machine  represented  number. 

The  last error needs to be  taken care  of,  since a  given dec- 
imal  number may not be  machine-representable.  The pro- 
gram in m accurately  gives a  lower  bound  and an upper 
bound  for every  value involved. In particular 

8 = 6.5 llC111’ 1 2.003 

> 1.557 2 lIAlI12 (2.16) 

8 = 10.5: IIC1llz I 0.500 

llE1ll’ 2 1.667. (2.17) 

In order to take care of e-4rul,  we compute  the  bound 

-4TUl  5 -0.688 

so that 
e-1 < e-4rUl. 
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Because 0 e e < 3, we  have 

llE1112e-4*u1 > I/E1112/3 L 0.555.  (2.18) 

This  last inequality  together with (2.17) gives the desired 
inequality, thereby  proving the homoclinicity.  Inequality i) 
of  the  Shilnikov  theorem can be  proved  by  the same pro- 
gram together with several  analyses. 0 

Let  us explain how  the  Do-unit is related to  the above argu- 
ment. Recall Fig. 12, where  we  described a homoclinic tra- 
jectory. A priori, however, there is no guarantee that the 
trajectory, after hitting-, should not hit U - l  directly, in 
which case the  homoclinicity does not hold. In order to 
prove  that would  not happen  for /3 E [6.5,10.5], we need to 
take  care of  the  Do-unit  where positive  half return maps  are 
needed  [6]: 

x;: u1 + u1 (2.19) 

A;: u1 + u-1. (2.20) 

Let /3* be the value of /3 at the  homoclinicity. It is very 
important to  note  that even  though a small  change of p would 
destroy the homoclinicity, the horseshoe is still present, 
because it is structurally stable. It i s  also worth  noting that 
even though a small  change in fl  may  destroy this  particular 
homoclinic  trajectory (Fig.  12), there are infinitelymanyval- 
ues of @ near /3* which give rise to other types of  homo- 
clinicity. For  example, a trajectory  starting with 0 on E‘(O), 
comes  back to a point very close to 0 but  not exactly,  makes 
another round and comes  back  exactly to 0 (see  Fig. 17). 

Fig. 17. Another  homoclinicity 

Similarly, one can think  of a homoclinic  trajectory  coming 
back to 0 after making  three  rounds, etc.  [8].  A similar state- 
ment  holds for heteroclinicity(see Section lLE7). Therefore, 
there is agreat  number of horseshoes in (2.4) which appears 
to explain why chaos  has been observed. 

E. Bifurcations 

A rich  varietyof  bifurcations has been observed from  the 
circuit  of Fig. 1. Fig. 18  shows the tweparameter  bifurcation 
diagram in  the (a, @)-plane, where a = -;and b = 3 are  fixed. 
The  two-parameter bifurcation diagram is  generated by a 
rigorous  bifurcation analysis described in [6]  and [IOIwhere 
the half return maps defined  by (2.10),  (2.19), and (2.20)  are 
extensively used. In  order  to explain  what the  picture 
means, let us fix /3 = 14 (recall that  this i s  the  original value 
in (2.3)) and  vary a 2 0. This essentially corresponds to fix- 
ing a value of  the inductance L while varying the value of 
Cl, where CY and C1 are inversely related: a = C&. In Fig. 
18, for each numbered  point  in  the (CY,  /3)-plane, the trajec- 

tory  projected onto  the (z,  x)-plane, is  depicted in the box 
with  the  corresponding number. 

One can  show [9], [IO] that  the  origin is always unstable. 
Theotherequilibria,P*,changetheirstabilitytypedepend- 
ing  on a. For a small  value of a > 0, for example, at of 
Fig. 18, P* are stable  and all the trajectories converge to one 
of  them. Typical trajectories  projected onto  the (z, x)-plane 
( ( iL ,  vcl)-plane)  are depicted in Box in Fig. 18. 

1) Hopf Bifurcation: Using  the Routh  formula,  one can 
show that for 

< ;(-3.5 + J(3.5)’ + 280) t 6.8. 

P* and P- are  stable. At 

a = 3-3.5 + J(3.5Y + 280) 

a pair of eigenvalues  crosses the imaginary  axis  and Hopf 
bifurcation occurs, thereby  signifying the  birth of a peri- 
odic  orbit.  Hopf  bifurcation here,  however, should  be  inter- 
preted in its generalized sense, because the right-hand side 
of (2.4) is only  continuous but  not a C4 function. Box 
shows two  distinct periodic attractors (stable limit cycles) 
at 

CY = 8.0 

projected onto  the (z, x)-plane. Note  that any  asymmetric 
periodic  attractor  must  occur in pair because (2.4) is syrn- 
metric with respect to  the  origin. 

2) Period Doubling: As we increase CY slightly  beyond 8.0, 
a period-doubling  bifurcation is  initiated. Box  shows the 
period-2 attractors at 

CY = 8.2. 

A further increase of CY gives  rise to  period4 orbits. 
3) Rossler’s Spiral-Type  Attractor: At 

a = 8.5 

the attractor (Box ) no longer appears to be periodic. It 
has the  structure of a Rossler’s spiral-type attractor [ I l l .  As 
wecontinuetuningthe  bifurcation parametera,weobserve 
that  the spiral-type attractor persists up  to 

CY < 8.5. 

4) Periodic  Window: At 

CY = 8.575 

aperiodicwindowinBoxm isobserved.Afterthis,aspiral- 
type attractor is observed  again. 

5) Rossler’s  Screw-Type  Attractor:  As  we  increase CY fur- 
ther, the above spiral-type attractor eventually deforms into 
a Rossler’s  screw-type attractor [ I l l .  
6) The Double Scro1l:As we increase a further, the attrac- 

tor  abruptly enlarges itself and  creates two holes located 
symmetrically with respect to  the  origin,  which corre- 
sponds to  the parameter  value 

a = 9.0. 

This i s  the double-scroll attractor (see  Box ). This  attrac- 
tor appears to persist over the parameter interval 

8.81 < a < 10.05. 

However, at the parameter  value 

a Q 10.05 
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Fig. 18. Two-parameter bifurcation diagram in the (a, Bkplane. 
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the  periodic  window in Box is observed. After this, sev- 
eral other  strangelooking  windows are seen. 
7) Heteroclinicity:  At 

a J 9.78 

One Observes that the “holes” Of the double scroll where vC,,  vc2, and  iLdenote, respectively, thevoltage across 
become small* In fact, the trajectory almost hits C,, the voltage  across C,, and the  current  through L. The 
p* and spends an extremely  long period Of time around functiong(.)denotesthev-icharacteristicofthe nonlinear 
P*. This signifies the  heteroclinic  trajectory  depicted in resistor and is described  by 
Box . One can prove the existence of a horseshoe in a 
manner similar to the  proof  given in (2.4). The heterocli- g(v) = -mov + 0.5(mo + ml) [Iv + Ell - (v - €,I]. (3.2) 
nicity  of  the  double sc;oll is discussed in [6], [91, and [131. 

8) Boundary Crisis:  Box  shows the attractor at 

a = 10.5. 

Suddenly,  however, at 

a J 10.75 

the  attractor  disa pears: (2.4) diverges with any initial con- 
dition (see Box 6 11 )! This  disappearing act provokes the 
interesting  question as to  how  the attractor dies. A  careful 
analysis  suggests that this phenomenon is related to the 
simultaneous presence of  a  saddletype  closed  orbit  encir- 
cling  the attractor  (the  broken line curve in Fig. 5). With  a 
slight increase in a beyond 10.5, the attractor appears to 
collide  with  the  saddletype  periodic  orbit. This collision 
provides  a  natural  mechanism  leading to  the attractor’s 
death. Note  that  if  the  attractor stays  away from  the saddle- 
type closed  orbit,  there would be no way for  the  trajectory 
in  the attractor to escape. If, however, the attractor  collides 
with  the  saddletype  closed  orbit,  then it would  provide an 
exit path  for the trajectory to escape into  the  outer space. 
This is what happens at a J 10.75, which signifies  a  bound- 
ary crisis. 

Box shows the  attractor at the  parameter value where 
the  homoclinicity  of (2.4) occurrs. Box depicts the 
homoclinicity.  Note  that  the  symmetry  of (2.4) implies  that 
homoclinic  trajectories are present in a pair. Finally, on the 
curve”Hopf at 0,” the eigenspace EC(0) changes i ts stability 
type, while €70) i s  always  unstable. 

Looking at this  bifurcation diagram, one sees that chaos 
can  be quenched  by  making a sufficiently small, i.e., mak- 
ingCl  sufficiently large, or makinga sufficiently  large,when 
B is fixed. In  the  former case, the  trajectory converges to 
P ,  while  in  the latter case, the trajectory converges to  the 
large periodic  attractor [I], [9]. Similarly, chaos  can be 
quenched  by  adjusting fi  appropriately  when a is  fixed. 

In closing  this section, there has been an interesting 
recent  discoveryof  the  fact  that at certain parameter  values 
the  saddletype  periodic  orbit is stabilized into  a  periodic 
attractor [14]. 

Ill. FOLDED TORUS 

A. Circuitry 

The circuit of Fig.  19(a) consists of  only  four  elements 
among which  only  one is nonlinear: the  piecewiselinear 
resistor  characterized  by Fig.  19(b).  Linear elements L and 
C, are  passive while  the  other capacitance has a  negative 
value -Cl. The dynamics is given by 

dVC, c, - = -g(v c2 - vc,) dt 

Fig. 20 gives a  realization.  Although  the capacitance on 
the  right-hand side is positive, the subcircuit N makes it act 
as a negative  capacitance when  looked at from  the left-hand 
port of N. 

B. Experimental  Observations 

We will give  only two pictures at two different values of 
Cl. Fig.  21(a) shows a 2-torus, while Fig.  21(b) indicates a 

I 

(b) 

Fig. 19. A simple third-order autonomous circuit which 
exhibits a folded torus.  (a) Circuitry. (b) Nonlinear resistor 
v-i characteristic. 

-I1 
Fig. 20. Physical realization of the circuit in Fig. 19. 
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(b) 

Fig. 22. Cross  sections  at iL = 0, vc, < 0, of the correspond- 
ing trajectoriesfrom Fig. 20, on the(v,-,,  v,-,)-plane. (a)  2-torus. 
(b) Folded torus. 

(b) 
Fig. 21. Attractors  observed from the circuit of Fig.  20 pro- 
jected onto the (vc,, v,,)-plane. Horizontal scale: 0.5 V/div. 
Vertical scale: 0.5V/div. Onlyone of two attractors is shown. 
(a)  2-torus. (b) Folded  torus. 

"folded torus" [15]. In  order  to see them  more clearly, let us 
look at  Fig.  22 which shows the cross  sections of  the cor- 
responding trajectories at iL = 0, vc2 < 0. It is clear that Fig. 
21(a) is  a 2-torus, while Fig. 21(b) looks like a folded torus. 

C. Confirmation 

Fig.  23 shows the corresponding  simulation results. 

D. Analysis 

Let  us transform (3.1) into  the  following dimensionless 
form: 

_ -  dx 
dt 

- - a f ( y  - x )  

* = - f ( y  - x )  - z 
dt 

dz 
dt - = By (3.3) 

where 

X = v C , / E ~  y = Vc2/El z = iL/(CZEl) 

a = CJC, /3 = l/(LCz) a = mo/C, 

b = m,/C, (3.4) 

f (x )  = -ax  + 0.5(a + b) [ [ x  + 11 - [ x  - 111. (3.5) 

The  rescaled  parameters which correspond to  the orig- 
inal circuit are 

a = 0.07 b = 0.1 p = 1 (3.6) 

and Fig. 23(a) (resp.,  Fig.  23(b))  corresponds to 

a = 2.0 (resp., a = 15.0). 

Lyapunov  exponents  at a = 2.0  (resp., a = 15.0) are 

ccl = 0 /LZ 0 / ~ 3  z -0.00675 (3.7) 

(resp., p1 = 0.027 p2 = 0 p3 = -0.1134). (3.8) 

Because no Lyapunov exponent in (3.7) is positive, the sys- 
tem is not chaotic. However,  since only  one Lyapunov  expo- 
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Fig. 23. Computer  confirmation of Figs. 21 and 22. (a) Pro- 
jection  onto  the (v,,, vcz)-plane at a = 2.0. (b) Projection  onto 
the (v,,, v,,)-plane at a = 15.0. (c) Cross section at i, = 0, 
vcz e 0, where a = 2.0. (d) Cross  section at iL = 0, vcz 0, 
where a = 15.0. 

nent is negative, the  solution is not a  periodic  attractor, 
either. The  presence of  2  zero Lyapunov  exponents, there- 
fore, prqiiides  a  further  confirmation  that  the  trajectory in 

is indeed  a 2-torus,  namely, a  quasi-periodic solu- 
tion. Fig* 2Y he  largest  Lyapunov exponent pl in (3.8) is  positive, 
whi ih confirms  that  the  trajectory in Fig.  21(b) is chaotic. 

Let  us look at typical  trajectories in terms  of the eigen- 
spaces of equilibria as we did  for  the  double scroll. First  we 
partition  the state  space into  three regions R1, Ro, and R-1 

separated by  boundaries 61 and 6-1, respectively, where 
(see  Fig.  24) 

R' = {(x, y, z):y - x < - I }  

Ro = {(x, y,z):(y - XI < 1) 

R-1 = {(x, y, z):y - x > I }  

B' = {(x, y, z):y - x = - I }  

6-1 = {(X, y, Z):Y - X = 1). 

System (3.3) has three  equilibria, 0 and f * .  The  eigenvalues 
atO(resp.,ff)consistofonerealj.o(resp.,rl)andacomplex- 
conjugate  pair Co f /Go (resp., C1 f jG1). In particular at a 
= 2,@ = 1 

T o  J 0.14786 60 = -0.048886 Go J 1.o060 

j.' = -0.10425 51 J 0.034426 131 = 1.0030. (3.9) 

Let ES(0) (resp., E"(0)) denote the eigenspace corresponding 
to To (resp., c0 f io,,). Similarly,  let E " ( f * )  (resp., E'(P*) )  
denote the eigenspace corresponding to C1 * j G l  (resp., 
T1). While  the  patterns  of  the eigenvalues in (3.9) are iden- 
tical to those of  the  double scroll, there are two subtle dif- 
ferences: 

i) The magnitude  of lqll is  not as large as in the  double 

Fig. 24. Typical trajectories. 

scroll, hence  the  "flattening"  of  the  attractor onto 
EU(P i, is  relatively weak. 

ii) P(O) and €"(Pi) are  almost parallel with each other. 

Let ( p f  be the  flow  generated  by (3.3) and  pick an initial 
condition x. near 0 above €70) but  not  on €YO). Since To > 
0, cp'(xd starts moving up  (with respect to the x-axis) while 
rotating  clockwise  around €'YO) (Fig.  24).  Since (3.3) is linear 
in R,,, cp'(xo) eventually  hits 61 and enters R1. Because of  the 
relative  position of ES(P *), (p'(x0, further moves up  while  this 
time  rotating  around E S ( P + ) .  Since tl > 0, the  solution cp'(x0) 
increases i ts magnitude  of  oscillation and eventually enters 
R,,. Then,  because of  the  relative  positions  of &and R1, cp'(xo) 
starts moving  downward.(with  rotation),  eventually hits 6-1, 
and  then  flattens itself against ES(0) while  rotating  around 
E"(0). Since Co < 0, the  solution decreases its magnitude  of 
oscillation and  gets into  the  original  neighborhood of 0. 
This  process then repeats itself, ad infinitum,  but never 
returning to the  original  point. Hence the associated loci 
densely  cover the surface of  a  two-torus. 

€. Bifurcations 

Bifurcations  of (3.3) are extremely rich. They  even include 
the  double scroll. Note  that (3.3) and (3.5) have four param- 
eters.  We will fix a and b as in (3.6) and vary a and 0. The 
appearance of  a  2-torus  indicates  that  one can look at the 
bifurcations in terms  of  rotationnumben. The rotation  num- 
berp is defined  for  a  homeomorphism b on a circle, namely 

h: S' + S' 

p = lim 
h"(X) - X , x E s'. 

n+oo  n 

(The limit always  exists.) If p is rational, i.e., p = mh,  where 
m  and n are positive integers, then  the  trajectory is n-peri- 
odic. In this case, all trajectories  approach  a unique n-peri- 
odic  orbit,  while  winding  around S' "m"times  before  com- 
pleting  one  periodic  orbit. Such behavior is called an m: n 
phaselocking. If p is irrational, then  the  orbit is quasiperiodic 
and, therefore, densely  covers S'. 

In order to study  the  rotation  number  for (3.3), one has 
to  find a subset homeomorphic to S' and  that  a homeo- 
morphism h is indeed  induced  via  the  flow  of (3.3) on it. 
Since this is an extremely  difficult,  if  not  impossible task, 
we  assume that  the  rotation  number can be  defined in the 
following region: 

{(a, B ) I I  < a < b(a)) 
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where b(a) is  a function  which describes the  curve €3 of Fig. 
25, the  bifurcation diagram. Let  us explain Fig.  25 in more 
detail. On the  line  DIVwhich is the  line a = 1, the  diver- 
gence of (3.3) is zero. For 0 < a < 1, a periodic  attractor is 
observed, while  for a > 1, an attracting  torus is observed 
(Fig.  22(a)). 

The solid  lines  indicate  the  boundaries of  the  regions 
where the  rotation  numbers are constant,  where 1 : 5 means 
that  the  rotation  number p = i ,  etc.  The chain  lines  denote 
curves on  which  perioddoubling bifurcations  occur. In 
order to avoid  further  complication  of  the  picture,  only  the 
onset of  the  perioddoublingcascade is shown.  The broken 
lines  indicate  boundaries  where chaos is observed.  The 
symbol  Cstands  for  (folded  torus) chaos  whereas DS stands 
for  the  double scroll. These  curves  are obtained  by observ- 
ing  the  trajectories via  Runge-Kutta iterations.  Note  that 
thereare many regions in Fig. 25wherethe  rotation  number 
is equal to some rational  number. Such regions are called 
Arnold tongues. 

A  careful  examination  of Fig.  25 reveals the  following 
empirical laws (for  fixed 8): 

i) If a1 > a2 and if p(al) = mJnl, p(az) = mJn2, then 

ii) There is an a3 such that a1 > a3 > a2, p(a3) = 
p(a1) < p(a2). 

(ml + m2)l(nl + nd, and 

p(a1) > dad > p(a2). 

Fig.  26 gives the  graph  of p as a  function a with 8 = 1. The 
resulting  monotone-increasing function is called  a devil’s 
staircase.  The graph is obtained  by  observing the trajec- 
tories via  Runge-Kutta iterations. 

In order to get a  feeling  of  what is happening,  let us fix 
8: 

B = 1  

and  vary a: 

0 < a < 14.3. 

Fig. 27 shows the  bifurcation  diagram  of vc, on  the cross 
section iL = 0, vc2 c 0. Let  us explain  this in terms of Fig. 
25. 

i) As one moves along 8 = 1 in the 1 :5 Arnold tongue, 
one  hits  the  boundary  of  the  2: 10 Arnold tongue,  thereby 
signifying a perioddoubling  bifurcation. 

ii) When  one moves to the  right  in  the 1 :6Arnold  tongue 
onthelineB=l,onedoesnothittheboundaryofthe2:12 
Arnold  tongue. This  explains why  one does not  observe any 
period-doubling cascade for  the  period-6  attractor. 

iii) As one moves to the  right along  the  line = 1, the 
circle map nature is destroyed  before  the system  gets into 
the 1 :6  phase-locking. This is  why  one observes a  sudden 
bifurcation  of 1 :6  phase-locking into chaos. It appears that 
this  chaotic  attractor is born via an intermittency  route.  After 
1 :6  phase-locking, i.e., after all fixed  points disappear  via 
a tangent bifurcation,  there are six regions  called “chan- 
nels.” Inside each  channel, a solution behaves like  a  peri- 
odic  orbit because it spends a very long  period  of  time in 
the  channel.  Once it gets out  of  the channel,  however, the 
solution behaves in an erratic  manner. Finally,  we remark 
that  the 1 :5 Arnold  tongue  overlaps with  the 1 :4  Arnold 
tongue, hence the right-hand  boundary  of  the 1 :5 Arnold 
tongue  cannot be observed  clearly. 

It should be noted  that  the above bifurcation scenario 
indicates  a “torus  breakdown” in the third-order  autonomous 
circuit. Previous  systems in  which torus  breakdowns have 
been  observed are either  nonautonomous [16], 1171 or 
higher  order [ M I ,  [19].  Also, previous work  on torus  break- 
downs has  been, to the best of  our  knowledge,  either 
through  laboratory  measurementonly[l6]  or by simulation 

0 1  x) 20 30 m a  

Fig. 25. Two-parameter bifurcation diagram in  the (a, @)-plane. 
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Fig. 28. Driven  R-L-Diode  circuit. R = 107 Q, L = 2.5 mH, 
f = 150 kHz, Diode:  3CC13. 

B. Experimental  Observations 

Fig.29showsthetwo-dimensionalPoincar6sectiontaken 
at  each period T = l / f   i n  the (voltage, current)-plane  of the 
diode. 

Fig. 29. Two-dimensional  Poincare  section in the  (voltage, 
current)-plane  of  the  diode at E = 6.2 V. 

C. Confirmation 

Although  the  circuit in Fig.  28 contains  only  three ele- 
ments, its dynamics is rather  involved in view of  the  non- 
linearities of  the p n  junction diode, which are not  purely 
resistive at frequencies above 100 kHz. A reasonably  accu- 
rate circuit model of  the  diode [21] is given  by Fig. 30, where 
both  the resistor  and  the  capacitor (Fig.  30(b))  are nonlinear. 
From  extensive laboratory measurements and  digital  com- 
puter  simulations, it has been  observed [22] that in order 
to reproduce  the same qualitative behavior, the  nonlinear 
resistor in the above model is not essential. Moreover,  the 
nonlinear  q-vcharacteristic  of  the capacitor  can  be  replaced 
by the  drastically  simpler  two-segment  piecewise-linear 
curve  shown in Fig.  30(c), without changing  the  bifurcation 
pictures. 

Fig. 31 showsthe  simulation  correspondingto Fig.  29.The 
cross  section,  however, is taken on  the (charge, current)- 
plane  instead of  the (voltage, current)-plane,  due to  a lack 
of time to prepare  the material. 

D. Analysis 

Toanalyzethecircuit,wewillfurthersimplifythedynam- 
ics, and then observe  several  key properties of the Poincark 

p ' O r -  

L ' I  
b I 

7F i2 
(b) (C) 

Fig. 30. Circuit  model of a diode. (a) Original  model  (par- 
allel connection of a nonlinear  resistor  and a nonlinear 
capacitor). (b) Characteristic  of  the  nonlinear  capacitor. (c) 
A drastically  simplified  capacitor  characteristic  without 
destruction  of  the essential features. 

return map.  Based upon these  observations, we will pro- 
pose a  surprisingly  simple  two-dimensional map model 
which essentially captures  the  bifurcation  pictures of the 
original  circuit. 

1) Further Simplification: In order to understand  how a 
chaotic  attractor is formed,  we will further  simplify  the  cir- 
cuit of Fig.  28 with Fig.  30(c).  Namely, we  have observed  that 
the  sinusoidal  voltage source  can  be replaced by a square- 
wave  voltage  source of the source period T = I / f  without 
altering  the essential  features.  Therefore,  we will analyze 
the  circuit shown in Fig.  32 where  the  nonlinear  capacitor 
is characterized  by Fig.  30(c).  The dynamics of  this  circuit 
is described by 

- = I  dQ 
dr 

i f Q r O  

i f Q < O  

i f n T s r <  ( n + : ) T  ) 

where we  use Q, I, and r to denote  the  original  circuit 
variables. Defining  the  following normalized variables: 

R 1 1 
L f  

k = -  a=- 
LC,f2 

p = -  
LC2f2' (4.2) 
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Fig. 31. Confirmation. The  cross section is  taken on  the (charge, current)-plane instead 
of  the (voltage, current)-plane. 

R L 

1. 
Fig. 32. Simplified circuitwhich capturesessentiallyall  the 
experimentally observed  phenomena. 

Equation (4.1) can  be transformed into 

9:: q 2 0 and  the driving source is V,(t) = -1 

9:: q < 0 and the  driving source is V,(t) = -1. 

Using  the above simplified  circuit  model and solution  com- 
ponents,  we  can uncover  the essential  features of  the  cir- 
cuit dynamics with  the  help of  the  following observations: 

i) The  area contraction rate is  constant and is strictly less 
than 1. This  stems from  the fact that  the area contraction 
rate is  determined  by  the  divergence  of (4.3), namely 

area contraction rate = exp  (divergence) 
where divegence = - k  = - R / L f .  (4.4) 

ii) 0 5 t < 1/2. 
Fig. 33 shows the  flows cp: and cp: with a = 0.1, /3 = 10.0. 

Each trajectory  corresponds to a different  initial  condition. 

First  observe that any solution  of (4.3) is  made up of  com- 
ponents from  the  following  four linear  autonomous flow son 

I I, \ ', L,, 

2 2  4 \ * \  \ ,  ' ~ \  

pi: q 2 0 and  the driving source is Vs(t) = +I  

9:: q < 0 and the  driving source is Vs(t) = +I  
Fig. 33. Deformation  of  the  initial  rectangle A along a tra- 
jectory  for 0 5 t 5 ID. 
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Consider  the  trajectory E, which passes through  the  origin. 
Picka"thin"rectangleAatt=Oasshowninthefigureand 
look at how A is  deformed  along  the  flow cp: as t increases. 
If  the  initial  condition (qo, io) E A lies to  the  right-hand side 
of E, then &90, io) never hits the i-axis. On  the  other hand, 
if (qo, io) lies on  the left-hand side of E, then ~$(90 ,  io) even- 
tually hits the i-axis  at  some time t, > 0; namely, (q,, il) = 
q$(q0, io). For t > tl the  dynamics obeys the  flow cp: where 
eventually it again hits  the i-axis  at  some time tz > t,; namely, 
(92, iz).= g(91, i,), whereupon it reverts  back to  the  original 
flow 0: for t > tz. The key  observation  here is that a < fl  
implies  that  the  vertical  velocity (i.e., the i-axis) component 
of trajectories  corresponding to cp: is  larger  than  that for 
9:. This implies  that the part of A which is on  the  left-hand 
side of E is stretched (in  the  vertical  direction) more  than  the 
part on the  right-hand side of E. Note also that on  the  left- 
hand side of E, 4; < 91 implies  that &(q;, il) has a  larger 
vertical  stretching  than &ql, i,). These observations show 
that A is eventually  deformed into sets B  and C shown in 
Fig.  33. 

iii) 1/2 I t < 1. 
After t = 112, the dynamics consists of  component  flows 

given  by Fig. 34. Extensive computer  simulations show that 

Fig. 34. Deformation of the set C along a trajectory for 
1/2 s t 5 1. 

for 112 I t < 1, the set &C) never hits  the i-axis if  the  initial 
rectangle A in Fig.  33 is chosen  appropriately. 

Combining  the above three observations,  we see that 
during  the  period 0 I t < 1, rectangle A stretches,  folds, 
and  eventually  returns to  the  original region D. Extensive 
numerical  observations show that  we can  choose appro- 
priateA  and D such that A 3 D. During  this transformation 
process,theareaofAiscontinuallybeingcontracted.Ifthis 
mechanism is repeated many  times, it can give rise to a very 
complicated behavior,  such as chaos.  Fig. 35 gives a  global 
picture  of  this  transformation over one  period  of  the  flow 

2) TweDimensional Map Model: Based upon  the  pre- 
ceding observations, we  propose  a  surprisingly  simple two- 
dimensional  map model  which mimics the transformation 
described in Fig.  35.  Fig.  36 gives a  more  precise  description 
of  the  transformation mechanism. A simple  two-dimen- 
sional map which transforms  the square STUV in Fig.  36(a) 
into  the lambda shaped  set in Fig.  36(d) is described  by 

Ot. 

a,x,, if x, 2 0) 
x,+, = Yn - 1 + 

-+x,,, if x, < 0 

+ 1  i 

I I 

Fig. 35. Overall picture of how  the initial rectangle A i s  
deformed  and  eventually returns to the initial region. 

(a) (b) (C) (dl 
Fig. 36. Two-dimensional  map model. (a) The initial rect- 
angle STUV. (b) The initial rectangle is  compressed in the 
vertical direction. (c) The  compressed  rectangle is  rotated 
by 90°. (d) The rectangle is  bent into a lambda  shape. 

This  map  captures all the essential  features of  the  bifur- 
cations  observed from  the  original  circuit as shown in  the 
following subsection. 

E. Bifurcations 

Fig.  37 gives  an experimental  observation  showing the 
ondimensional bifurcation  diagram  of  thecurrent iof the 
circuit of Fig. 28 when  the  amplitude E of  the  applied 
sinusoidal voltage  source is increased  periodically  from 0 
to7.7VIEismodulated byasawtoothwaveform).Eachpoint 
in this  "bifurcation  tree"  represents a one-dimensional 
Poincark section  taken at  each fundamental period T = 
l l f o f  the  sinusoidal source.  There  are two striking features 
in this  bifurcation  tree: 

i) A succession of  large  periodic  windows the periods 
of which increase exactybyone as we move from any 
window  to  the next window  to  the  right. 

ii) A succession of chaotic bands sandwiched  between 
the large  periodic  windows. 

The  cross section in Fig. 29 corresponds to E = 6.2  V,  i.e., 
thefivechaoticbandsofFig.37correspondtothefive"legs" 
of Fig. 29. 

Let  us examine how  the  simple map (4.5) captures the 
essential  features of the  bifurcation  phenomena  observed 
experimentally from  the R-L-Diode circuit. Fig. 38 shows 
the one-parameter bifurcation diagram of  x for (4.5) where 

a, = 0.7 b = -0.13 

and a2 is  varied over the range 

0 5 a2 5 20. 
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Fig. 37. One-dimensional  bifurcation  diagram of current i when  amlitude E is increased 
from 0 to 7.7 V. 

X 

a2 

Fig. 38. One-parameter bifurcation diagram ofxforthetwo- 
dimensional  map  model  where 0 5 a, I 20. 

Fig. 39 shows the  attractor in  the ( x ,  y)-plane corresponding 
to 

a2 = 18.0. 

Note  that the attractor is qualitatively  identical to the  one 
obtained  experimentally in Fig. 29. 

A detailed analysis of (4.5) can be  performed because of 
its simplicity. Based upon  the  bifurcation analysis of (4.5) 
one can understand  the  bifurcations  of the  original  circuit. 
Fig. 40 shows the  detailed  bifurcation  mechanism associ- 
atedwith  theperiod4window. Bifurcationsassociated with 
other  periodic  windows have similar  structures. The 
sequence of  drawings in column B of Fig. 40 shows how  the 
attractor  of  the  two-dimensional  map  model is deformed 
as a2 is  increased from its value at the lowest  position to a 

X 

Fig. 39. Attractor  observed from the  two-dimensional map 
model at a, = 18.0. 

larger  value at the  top position.  The’knapshots” in column 
A show the  corresponding  experimental  observations  taken 
from  the  original R-L-Diode circuit as E increases from  the 
bottom. The four insets in  column  Care enlarged  pictures 
in a small neighborhood  of  the  periodic  point P4A (of the 
two-dimensional map) identified  by  the  solid triangles A. 

Wecan nowgiveacomplete  pictureofwhat is happening 
in the  original  circuit. 

i) Let  us begin  with  the  picture at the  bottom in column 
Band  look at the  folded  object. The symbol * identifies  the 
location  of the fixed-point Qof  (4.5) which is a saddle point 
for the present parameter  range. As we increase the value 
of a2 ( E  in the  original circuit), a  saddlenode  bifurcation  of 
period4 takes  place outside the region  where the attractor 
lives.  This period4  orbit has a  strong  influence on the 
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A B 
Fig. 40. Detailed bifurcation  mechanisms  corresponding  to the period4 window. Col- 
umn Agives  experimentally  measured  pictures, while  the insets in column C show blown 
up pictures  around P4A. 

C 
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“structure”  of  the  attractor. Since the  bifurcation  in  this 
case corresponds to that of a saddle-node, a stable and  un- 
stable periodic  orbits are born in pairs  of  one each. 

ii) As we  increase a2 further,  the  unstable  periodic  orbit 
moves  closer  and closer to  the attractor,  and  finally it col- 
lides with  the attractor. This is depicted  in  the  next to the 
last picture  in  column B, where the solid  triangles A (resp., 
open  dots 0) correspond to an unstable (resp.,  stable) peri- 
odic orbit. The three insets in column C show the  situation 
around  the  right-most  unstable  periodic point  denoted by 
P4A.5 The bottom inset (in  column C )  shows the  situation 
before  collision,  where thick lines  indicate W& the 
unstable  manifold of  Q(the closure  of which is conjectured 
to be the  attractorL6 As one increases a2 by an appropriate 
amount,  one sees that 

W t  collides with w:4A (4.6) 

where WSp4* denotes  the stable manifold  of P4A.  This is 
shown in the second inset from  the  bottom  in  column C, 
where W& is  denoted by thick lines. A  slight increase of a2 
leads to the  situation  depicted by the  third inset from  the 
bottom in  column C, where, this  time, Wlj is  indicated by 
thick  broken lines.  The crucial  observation in this  picture 
is that  the  unstable direction of P4A provides  an orbit with 
an exit gate to escape into  the  outer region. Because the sta- 
ble  and the unstable  manifolds are invariant, a collision of 
the  attractor with P4A is equivalent to a collision  of  the 
attractor with wsP4A. 

iii) As there is  now an exit gate, the  attractor can no  longer 
survive. Consequently, we  observe the sudden disappear- 
ance or  extinction  of  the  attractor at the  critical parameter 
value given  by (4.6). This phenomenon,  therefore,  repre- 
sents  acrisis. After escaping into the  outer  region, however, 
the  orbit cannot diverge to infinity because the stable peri- 
odic  orbit is waiting  to  attract it. This situation is depicted 
in  the  third  picture  from  the  bottom  in  column B. This is 
the  mechanism  responsible fortheextinction  (death)of  the 
“two-legged”  attractor and the  simultaneous emergence 
(birth)  of a stable period4 orbit. 

iv) As we  increase a2 further,  the stable period4  orbit 
loses its stability via aperiod-doubling  bifurcation. The lim- 
iting  periodic attractor  then changes into  a chaoticattractor 
madeupoffourisletsasdepicted inthefourth  picturefrom 
the  bottom  in  column B. The destablized  periodic  points 
are denoted by four  solid  dots 0 .  Observe  that  the  chaotic 
attractor in this case is the closure of  the unstable  manifold 
of 0 ratherthanthatof * (seei)). Notealsothattheunstable 
period4 points  represented by the  4 solid  triangles A born 
in the  preceding picture are still present near the  chaotic 
attractor. 

v)  As we  increase a2 even further,  the  chaotic  attractor 
eventually  collides with  the stable manifold of A; namely, 

’Since  this  is a saddle-node bifurcation, a stable period4 orbit 
and an unstable period4orbit are born simultaneously. Oneof the 
stable periodic points is denoted by P4B, whereas one of the 
unstable periodic points is called P4A. 

%enerally it is conjectured [4] that a chaotic attractor is the clo- 
sure  of the unstable manifold of a periodic point. In fact, Misiu- 
rewicz [23] proved this  fact rigorously for a piecewise-linear two- 
dimensional map (the Lozi map) which is similar to (4.5).  Extensive 
simulations  suggest that this appears to be the case  for  (4.5) as well. 

WF4, collides with WSp4A. (4.7) 

This is depicted in the  third  picture  from  the  bottom  in col- 
umn B.  The corresponding  inset  in  column C shows the 
blown-up details around P4A. When (4.7) occurs, WF4B plays 
the  role  of  “bridging”  between  the  chaotic islands, thereby 
giving  birth  to  the attractor with “three legs“ shown in  the 
topmost  picture in column B. Note  that  the increase in  the 
number  of legs (or  the  number  of islands in  the chaotic 
bands) is attributed to the  interaction  of  the  attractor  with 
the  other perioddorbit  which was born  earliervia a saddle- 
node  bifurcation. 

Details of  this  section are found  in [24],  [25]. 

V. REMARKS 

There is another  interesting  circuit [26] which cannot be 
included  in  this article due to the space limitation. The cir- 
cuit exhibits a hyperchaos [27l, i.e., it exhibits  a  chaotic 
attractor with more  than  one  positive Lyapunov  exponents. 
In other  words, the dynamics  expands not  only small line 
segments but also  small area elements, thereby  giving rise 
to a  “thick”  attractor. This circuit appears to be  the  first real 
physical  system where a hyperchaos has been  observed 
experimentally and confirmed  by  computer. The  reader is 
referred to [26]. 

The circuits  described in  this article are so simple  that 
there  must have  been electrical engineers who”saw”chaos 
on  their  oscilloscopes and yet did  not “recognize” it for 
what it was.7 One cannot  recognize a fact without having 
the  corresponding  concept. 

The  reader who has read this paper as well as other papers 
in this special  issue, would understand (1.3)and (1.4)aswell 
as (1.1) and (1.2), while  in  the past, only very few  people 
(Poincare, Birkoff, Einstein, and several others)  were aware 
of  them. 

Finally, there is  a famous story  by  Chuang Tsu  (369-286 
B.C.)  (Fig. 41): 

The emperor of the  South Sea  was called Shu 
[Briefl, the emperor of the North Sea  was called Hu 
[Sudden], and the emperor of  the  central  region was 
called Hun-tun [Chaos]. Shu and Hu from  time to time 
came together  for a meeting in the territory of Hun- 
tun, and Hun-tun treated  them very  generously.  Shu 
and Hu discussed how they could repay his kind- 
ness. ”All men,” they said, “have  seven openings so 
they can see, hear, eat, and breathe. But Hun-tun 
alone doesn’t  have any.  Let‘s trying  boring him 
some!” 

Every day they  bored  another hole, and on the sev- 
enth day Hun-tun  died. 
(Translated  by B. Watson  [30]) 

Certainly,  what scientists and  engineers as well as other 
people have been doing  in  the past  decade is to 

“bore  holes in chaos.” 

’Van der Pol and Van der Mark say in their 1927 paper [28]“0ften 
an irregular noise is heard in the telephone receivers before the 
frequency jumps to the next lower value. However, this is a sub- 
sidiary phenomenon, the main effect being the regular frequency 
demultiplication.” 
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Fig. 41. Chuang Tsu’s story  of  chaos [29]. 
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This,  however,  is the  very thing they  have  been doing to 
everything  mysterious  all  the  time.  When  the  mystery is 
eventually  cleared up by analysis, characterization, proof, 
etc., it ceases to be a mystery; it is  objectified.  The word 
“death“ should perhaps  be  understood in this sense. 
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